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ARBSTRACT

The performance of the Concert Multiprocessor s imvestigated  using  probabilistic
maodels.  Analysis proceeds by  decomposing Concert along  its natural  hicrarchics into a
Multibus subsystem  and & Ringbus subsystem,  Bach  subsystem is modeled  inisolation
ignoring the interactions between subsystems.

A series of Multibus models is developed based on a ey simple processar model and
some simplitying assumptions. ‘These maodels are analyzed using Markov chains and queucing
theory. Ways to relax some of the assumptions and treat more  general  processor models
arc discussed.

The Ringbus is a novel and previously ananalyzed interconnection scheme which is of

independent interest. Analysis of the Ringbus subsystem concentrates on a peneral version
of the Ringbus which lacks the topological constraints of the Ringbus actuaily ¢iployed
Concert. The determination  of the  optimum  throughput  of the  Ringbus and  associated
optimum arbiter algorithm is formulated as o Markovian decision problem. This problem s
solved {or various cases as the availuble compuLational resources allowed.  Approvimations,
bounds, and a few general results are derived for more computationally intensive cases. ‘The
version of the Ringbus used in Concert is also analysed for a suaple case. Finally, the
simplifying assumptions made in analyzing the Ringbus are considered.

The subsystem maodels can be integrated to produce an overat! model by matching the
fist moments of the interactions between  sabsystems. This integraiion was petlunmed  tor
several  cases. The results oblained  via integration  agiced  well with those  obtamed  via
simulation.

Two scts of simultions are presented. The first set compares the pertormance of some
Ringbus architectures and arbiter algorithms in an cnvironment close (o that i the actuad
Concert system and presents results {or some cases for which the Markovian deciston theory
problem s oo computationally  cxpensive 10 solve, The second see presents the expected
performance ol the actval Concert systemn for difterent paramcter values,
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Chapter 1

Introduction

1.1 Introduction
The goal of the rescarch reported in this thesis is to model the perfertance of the Concert

Maultiprocessor [A2] in order to answer the following questions:
1. What is the performance of the system as designed and built with respect to some metric?

2. Why is the performance as it is? What factors influence ihe performance, what is the sensi-

tivity of the performance to these factors, and what are the limitations of the system design?

3. How can the performance be improved and where should the design be modified o achieve

this iunprovement? What are the critical sections and bottlenccks in the design?

An answer to the first question satisfies a natural curiosity; an answer to the sccond gives
users idcas how to structure programs and applications to achicve the best possible performance of
the Concert system: and finally, an answer to the third indicates how to achicve better perfor-
mance in future designs. Another outcome of the work described hercin is that it provides a start-
ing point for futurc modcling cfforts. ‘Yhe experience and knowledge gained through this rescarch
can be used to guide the development and applications of higher level and/Zor mare complex
maodels.

The performance metric used in this rescarch is the throughput of the systemi. This metric is
simple and yct represents the basic goal of multiprocessor systems.  However, throughput is a
rather crude metric to use when comparing the pertormance of different systems because strue-
toral and organizational differences ofien cause the definition of throughput to differ.  For-
tunately, the main use of hroughpuat in this thesis is to gauge the change in pertormance due to
variations in the paramcters of the systetn or due o snall modifictions of the system,

Throughput is well suited for this Xiad of study.

SR INSNIN AN,
ath ,

v

.
ol

v,
14
P

‘YA Y
’ﬁ..:‘.\, ‘,.I‘. l. e
AT, 3

‘.
o

LS

e, e,
Ny,
"

2



18 latroduction

The system is madeled at the memory access fevel and thus throughput in this case is the
average number of memory accesses per unit time., Fach processor is assumed to spend most of its
time accessing its associated locai memory. (Orgavization of the system will be discussed in detail
in the next chapter.) ‘The processor model employed is the simpiest imaginable in such a case: the
processor spends some time performing local processing after which it makes a non-local memory
access (for which it may have o wait for bus mastership) and then resumes local processing. ‘The
opceration of cach processor is assumed to be independent of that of all other processors. ‘The rea-
sons for the memory access modeling level, the simple processor model, and the assumption of
independent processors are the same: at this point in time not cnough is known about the
languages. programming modcels, programs, and applications to obtain more detailed modcls.
FFurthermore, the Concert system is designed to be a testbed for the examination of many dif-
ferent muitiprocessor ideas. The common denominator of all Concert applications is the system
itself and that is where this rescarch is focused. “The basic premisc of this rescarch is to start with
some very simple modcls, develop them fully, evaduate them, and then detennine how the models
can be improved. Complexity is always casy to add to models, sometimes to the point that they
become unwicldy, but it is more difficult 1o add complexity in such a way that keeps the madels
simple but accurate. Thus this thesis should be considered as the first step in an iterative cycle o
obtain models incorporating additional features such as processor dependencies, language issucs,
and programming models.

Because of the size and complexity of the Concert Multiprocessor, direct modeling of the
§ystcm - even with the simple processor model - would be a forisidable task. The approach taken
in the sequel is to decompaose the system into sabsystens along the lines of the system's natural
hicrarchics. [<ach subsystem is andilyzed in detail and then all the subsystem modecls are integrated
to determine the performance of the total system. Analytical models are used for cach subsystem.
The functional cquations associated with analytical models allow casy prediction and quick cvalua-
tion of the cffect of various changes in the modcel parameters. n short, they allow a lot of ground
to be covered in a structured manncer and this makes them idcally suited to the st step of the
ierative cycle described carlier.,

Simulation is employed in this thesis in a tew instances where the analytical models become
intractable or unmanageable. However, the main use of simulation is to determine the accuracy of
the integrated modcls.

The rescarch described hercin started when the author joined the Concert Project just after
construction had begun. Thus this work in no way affected the design of the system as desciibed

in the next chapter and in Anderson {A2]. ‘The optimum time to begin modcling is during the

design stage. Unfortunately only the most rudimentary (and ﬂ;nwcdf) simuliations were performed

t I his simulation of the Ringbus arbiter. Anderson created a quctie of reguests for cach slice (defined in see-
tion 1.2) and termunaicd the simulation when all the quedes emplicd  However, 1f a gqueue empied and at east

P
Y
Ay

.
S

P

» -
"
a

{'\\\\

[
{
»

s

a0y
NN

<

VATV 7

. "( P P

S Ty

2w
.

P A
sl

v
AR

+



Introduction 19

at that time.  Although conducted after the design stage, this rescarch is still extremely uscful in
answering the three basic questions poscd carlier.

‘This thesis is organized into four chapters and cach chapter is divided into sections. 'The
next section in this first chapter describes the Concert Multiprocessor. The section after that
presents more details on the madeling level and modeling strategy. ‘The factors considered in this
study and the assumptions made arc discussed in detail. ‘The final two sections in this chapter

briclly discuss previous work in this arca and preview the following chapters.

onc qucuc was still nonemapty the simulation still ran and still coliected statistics with null requests (i e the ab-
sence of a request) generated for cach slice with an empty queue. Thus the statistics were biased by the stream
of nulf requests when a gucue emptied.
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20 . introduction

1.2 The Concert Mullipmccssorf

Concert is a tightly-coupled, shared memory multiprocessor. 1t consists of multiple proces-
sors, cach exccuting portions of code, communicating through shared memory to ceoperate on the
solution of a large task (or tasks). It is classificd as a multiple instruction stream, multiple data
strecam (MIMD)) computer [F1).

The Concert Multiprocessor consists of a hicrarchy of time-shared (i.c. circuit-switched)

buses. At the top level, cight slices arc interconnected by bus segments as shown in Figure 1.1.

\ Rus Scgments

/

fFigure L1: Top level view of Concert

Circuitry within cach slice connects the two adjacent bus scgments cither to different interaal stice
resources or to cach other so that all internal slice resources are bypassed. An clectrical connection
can be cstablished from a resource within one slice - the source - to a resource within a different
slice - the destination - by an appropriate conncction of the bus seaments within the source and
destination slices and by joining the bus scgments together in all slices between the source and
destination. Lach bus segment is bidirectional, thus source and destination slices may be connected
by a path in cither the clockwise or the counterclockwise dircctions. More than one soce-
destination connection can be supported simultancously provided that 1) there is a contiguous con-
nection of scgments from cach source Lo its destination, and 2) cach bus segment and cach slice

resource is allocated to at most one source-destination connection. Various simultancous connee-

tions are depicted in Figure 1.2,

t Only the details of the design which are fell 10 be relevait to the modeling clfort in the sequel arc discussed
here. See Anderson [A2] for more complete information.
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Figure 1.2: An example of simultancous conncctions on Ringbus .

. \: 1

ot

Note that a maximum of cight simultancous connections can be supported (c.g. if cach slice and its o

S
immediate clockwise ncighbour comprise a source-destination pair). Once a connection is csta- ;:f'
blished from source to destination, that connection is maintained and all the resources involved in -

‘.
that connection remain allocated to only that connection until the source slice no longer requires ;

. . . . . . LW
the conncction. A central arbiter, shown in Figure L1, controls the allocation and connection of -:..,‘

o
the bus seginents. The ring of bus segments shown in Figures 1.1 and 1.2 is called the Ringbus., g-:

» A

Lach slice cousists of up to cight processor-local memory pairs (one local memory block per s
processor is the usual, but ot necessary, configuration), a global memory block, a time-shared bus o

DY
called the Multibus, and a Ringbus Interface Board (RIB). Each processor communicates with its 'F:; A
local memory over a dedicated bus called the high speed bus (HSI3). This bus is private to the pro- .;:'C
cessor and independent of the Multibus and other high speed buses.  All the processors and —

ey

. , . . =
menworics (both local and global) arc also conniected to the Multibus. 'The Multibus, global -

.I
memory (via a HSB), and the Ringbus segiments adjacent to that slice connect to the RIB. Various :-s:
access paths and circuitry inside the RIB (described in scction 1.2.2) allow these items to be inter- .
connccted. ‘The resources of a slice that arc available for interslice communication can be divided L

N
. . . . e -
into two mutually cxclusive groups: sourcce resources and destination resources. ‘The processors N

-“‘
connccted to the Multibus arc the only source resources. ‘The destination resources consist of the o>

L[]
global memory and some global registers (which are inside the RIB). n

Only three types of communication, all originated by processors, can occur in the Coneert
Multipmcc&mr.T A processor can communicate - i.c. access - its Jocal memory via the HSB, the )
local mcmory of other processors on its slice and the global memory of its slice via the Multibus, .
and the global memory of other slices (and the global registers of its slice) via the Multibus and v
t et i . - o
Communication can also be originiated by other potential Multibus masterssuch as 170 devices. Towever, "
these other potential masters essentially behave like processors. :\:
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Introduction

Ringbus. We term these types of accesses HSB, Multibus, and Ringbus accesses respectively. Note
that a processor can not communicate directly with other processors or the local memory of pro-
cessors on other shices: such communication must occur through the local or global memory. All
bus transactions in Concert are single memory transactions - read, write, or rcad-modify-write.

Successive accesses require establishment of direct bus connections from source processor (o desti-

nation memory for cach access. ‘Thus there is no store and forward mechanism or anything of this

kind on the Ringbus or clsewhere.
‘The structure of a four stice version of the Concert Multiprocessor is illustrated in Figure 1.3.
This figure shows all major interconnections within Concert and illustrates some representative

accesses from cach of the three types of aceesses.
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Figure 1.3: The Concert Multiprocessor (only four slices shown) o

‘The Multuibus (including high speed buses, processors and incmorics), RIUB, and achiter are o

now discussed in more detail. .
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24 Introduction

1.2.1 Multibus

The Muatltibus is an 1EEL 796 standard multi-master bus.  An additional bus, which runs
parallel to this 796 bus. is physically divided into shorter independent bus segments cach of which
scrves as the high speed bus for a processor. ‘The processors and miemories are commercially
available dual-ported boards (Microbar Inc. products DBC68K aud 1DBRS0 respectively) that cach
have one Multibus and onc HSB port.  As described carlicr the HSB is private to a processor; thus
there is only onc processor per HSB. The processors are based on the Motorola MC68000)

MiCroprocessor,

When a memory access is initiated, a processor first attempts to access the desired location

on the HSB. If this attempt is successful, the memory access proceeds. I it is not successful, the

processor accesses the location via the Mualtibus. ‘Thus a psocessor accesses its own local memory

over its HISB and the local memory of other processors or global memory over the Multibus.

Accesses on the HISB take considerably less time then accesses on the Multibus duc o the differ-

cnces between the TISH and Multibus protocols.

P
a

Contention for the mastership of the Multibus is resolved by a round-robin arbitration unit.

o .
’

This unit takes a maximum of two Multibus clock cycles (10 M1z clock) as pictured in Figure 1.4,

7/
REQ* 1 !

t
)
¥
GRT* v L
i

w-_—— 1

-~ request latched /rcqucsl granted
¥

Iigurc 1.4: Multibus arbitration signals

One cycle is required to Litch the request lines and another is required for the arbitration and pro-

pagation delay. This arbitration unit grants possession of the bus to a processor for only as long as

it takes to complete a single memory access, which cannot exceed 16 bits. 'The 68000 can perform

bytc (8 bit), word (16 bit), and long word (32 bit) operations. .ong word operations consist of

two scparate 16 bit accesses: thus a processor must gain control of the bus twice for a long word

access. Other processors itay scize the bus between these two accesses.,

Contention also exists for local memories since a local memory can be addressed simultanc-

_-{‘l

ously over a processor's HSB and over the Multibus. This contention is resolved by arbitration cir-

.'.‘l.n
"
4 A4

e

cuitry on the dual-ported memory boards.
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L22 IR

When the RIB recognizes a memory aceess on the Multibus in the Ringbus address space
(i.c. a Ringbus access), it decoxdes the destination slice from the address of the access and sends a
request Lo the Ringbus arbiter for a connection between the Multibus of the source slice and the
destination slice. When the Ringbus arbiter grants the request, it directs some number of Rilis to
form a path between the source and destination and then it lets the memory access at the source
slice proceed.

A diagram of the access paths within the RIB is shown in Figure 1.5. Arrows denote the
directionality of the paths and lines perpendicular o a path denote a switch which can be cither

open or closed.

coumnterclockwise
Ringbus scgment

A\ ----- M
! 1
] GM.
! :
: i Muttibus
[} I ]
t 1
e-/_ . -__ J
RIB

Note: global registers

clockwise within RIB not shown.

itingbus scgment

IFigurc 1.5: RIB access paths

Notice that the Ringbus access paths arc asymmctrical. Memory aceesses enter the Ringbus
on the segment to the clackwise direction of the source RIB and exit via the Rimghus segiment to
the counterclockwise direction of the destination RIB, This causes the Ringbus to be biased
toward memory accesses in the clockwise direction around the Ringhus. As depicted in Figure 1.6,
a memory aceess o a neighbouring RIB in the clockwise direction requires one Ringbus segment
compared to three for the neighbouring slice in the the counter clockwise direction. (This last
access could dlso be made in the clockwise direction. For a Ringbus with cight seginents, this

would require scven segments.)
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G.M.
G.M.
Access path
Access
Path
GM.
- —

By
)

Figure 1.6: Access paths to ncighbouring RIB

‘The asymmetrical access paths clearly reduce the maximum number of accesses that can
occur simultancously on the Ringbus if any of the accesses take place in the counter clockwise
direction. ‘The designers of the Concert system felt that the asymmetrical access paths would sim-
plify the Ringbus arbiter (sce scction 5.2.2 in Anderson [A2)).

The same dual-ported memaory boards used for the leecal memories on the Multibus are used
for the global memories.  As indicated in Figures 1.3 and LS, the Multibus port of the global
mcemory conncects dircctly to the to the Multibus ot that slice. The HSB port of the globat memory
connects to the Ringbus. As before, arbitration circaiiny on the gloLal memory board handies

simultancous Multibus and  Ringbus accesses o that board,  Nate that afl accesses o global
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memory require some portion of the Ringbus, except for accesses to the global memory in the

same slice as the processor making the access.

There are also a small number of global registers located in the RIB (they arc not shown on
any of the Figures) for the purpose of various sundry activitics such as resetting the slice, inter-
rupling processors in the slice from a processor external to the slice, enforcing read and/or write
protection on the slice’s global memory, and some limited performance monitoring. ‘These regis-
ters are accessed in the same manner as the global memory except that a slice cannot access its

global registers dircctly from the Multibus.  All global register accesses require the Ringbus.

1.2.3 Ringbus Arbiter

‘The arbiter uscs a rotating priority scheme to ensure that all requests eventually get granted.
If the slices are numbered consecutively from 0 to S — 1, where S is the number of slices, then the
priority of slice i is pri(i)= (i ~n) mod S where a is the current top priority slice. A request is
held at the tep priority until it is granted at which time » is updated to the next slice in the coun-
terclockwise direction that has a pending request. A number of algorithms may be used to grant
any combination of lower priority requests that do not conflict with cach other or with any grants
(i.c. mcmory accesses) in progress. ‘Thic particular algorithm used in this case grants a request only
if it does not contlict with any requests at higher priority fevels or grants in progress. Qaly the
dircction requiring tie smiallest number ol Ringbus seginents is considered {or granting the
requests.  In the case of a tie in the number of scgments required in clockwise and counterclock-

wisce directions, the clockwise direction is chosen.

The arbiter incorporates a clever design. The Ringbus segments required for cach request
arc determined from the destination of the request.  Since requests arc only granted in one direc-
tion as mentioned carlicr. there is no ambiguity in determining which segments are required. Each
Ringbus segment is provisionally granted to a request. 'The request to which a particular segment
is granted is determined by the priority of the requests. When a request has been granted all the

scgments that it requires, the request is granted.
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Figure 1.7: l.ogic diagram of arbiter
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Introduction 29

A logic diagram of the arbiter is presented in Figure 1.7, 'The SN Rom determines the scg-
ments tequired for cach request.  Each of the SG Roms, one for cach scgment. determines the
request to which that segment is granted. ‘The SG Roms automatically grant a segment (o all
requests that do not require it. ‘Thus the cight scgment grant lines just nced to be ANDed to
determine if the request has all the required segments. To prevent a “request” from being
granted when there is in fact no request, the grant line is ANDed with the request line. Some

additional logic bypasses the SG Roms to prevent the interconnection of the required segments

from being changed while a grant using them is still in progress.

equest cquest
/::uchcd J/J;mmcd
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Figurc 1.8: Ringbus arbitcr timing

The arbitration time for this arbiter is between two and three arbiter clock cycles. As indi-

cated in Figurce 1.8, once the requests are latched into the arbiter, one cycle is required for the

arbitration and another cycle is required to decode and latch the grant lines.
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1.3 Modeling Details N
v/
1.3.1 Processor Model o
)
We assume a simple probabilistic model for cach processor based on accesses to non-local :,-4’.’:
memory (i.c. those memory locations which a processor can only access via the Multibus). We ,'::::
partition the operation of a processor into three phases: 1) processing, 2) waiting, and 3) access- A
ing. (We add a fourth phasc later.) ‘The processing phase corresponds to the interval between the .:;:
completion of one memory access via the Multibus and the request for the next memory access via lj::
the Multibus. (A processor must request the Multibus and be granted its use by the Multibus E‘;
arbitration circuitry before a memory access may proceed.) Only local (i.c. [HSB) memory accesses -8
may occur during this interval. We consider the instructions for cach processor 1o be stored :‘_:.-
mainly in its local memory. ‘Thus we regard the operation of a processor as consisting of periods -:"“
of processing (hence the name processing phase), where the processor is accessing instructions and ::Q
data stored catirely within its local memory, punctuated by accesses to global memory for data and :
other instructions. .'
‘The waiting phase corresponds to the interval between the generation of a Multibus request ’
and the initiation of the access corresponding to that request. A Multibus memory access from ,,’
onc processor may have to wait for the completion of other Multibus accesses before it can begin. v
The accessing phiase corresponds to the interval during which a Multibus access is in progress by E:
that processor: it is the eniire dvration for which the processor maintains uninterrupted mastership ,’ﬁ:
of the Multibus. These three phases correspond to the eperation of a processor from the point of :.,h
view of the Multibus, .
The interval for which a processor is in the processing phase we call the processing time, '
denoted by 1, the interval for which a processor is in the waiting phase we call the waiting time
for a memory request, denoted by 1,: and the interval for which a processor is in the accessing i

phasc we call the access time, denoied by 7,. Onc cycle of a processor, consisting of these three

times, is depicted in Figure 1.9.

Processing time Wailing lime Access time
l | ] J

fs—— 1 —e— " —e—— L — >

P

Figure 1.9: Onc cycle of a processor

ol

. L. . . . . . . N L8
More precise definitions of 1,, . 1, in rms of Multibus signals arc given in scction 2 of :\-;:-
Appendix A, The waiting time, 7, . is defined so that it is always sero when there is only onc oot
S
N
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processor on a Multibus, ‘The delay of the Multibus arbitration circuitry is included in the access ] .‘:{
time,

We consider 4, 1, and 4, 1o be random variables. f, and 1, have given probability distri- j::
butions which serve as inputs to the processor madel. The probability distribution of 1,,, which is ','; )
determined by the contention tor use of the Multibus, is the output. Given that a processor gains ,fc,':
mastership of the Multibus for a memory access, we assume that the access requires use of the P
Ringbus with probability ¢, in which casc we call it a Ringbus access, and that it requires use of .t'_'_i
only the Multibus with probability 1 -, in which casc we call it a Multibus access. Given that a E:.’
Ringbus access occurs, we assuine that its destination is the global memory or a global register _‘; )
connected to Ringbus stice 7 with probability pf”. i=-(S72--1), -+, - 1L1L2, - 0r S/2 RES
The number of slices is S and 7/ denotes the position of a slice with respect to the one from which E'.: '
the access originates. Negative numbers indicate the counterclockwise direction, positive numbers :\'\':
indicate the clockwise dircction around the Ringbus rclative to the slice originating the access. .:
Thus i = - 2 indicates the second slice along the Ringbus in the counterclockwise direction from .
the slice originating the access and 7 =2 indicates the sceond slice in the clockwise direction. We ji?'_‘
call the sct of p,’m the Ringbus destination probabilitics.  Since in most applications, accesses to
the global registers will be infrequent, we ignore accesses by a processor to the global registers in ::.:'.:'
its own slice. We assumie that all Ringbus accesses have the same access time distribution and that o
all Muttibus accesses have the same access titne distribution (which in general will ditter frem that :f:
for Ringbus accesses). ‘The Ringbus access time distribution is an cquivalent inodel of the entire :S::
Ringbus from the perspective of the Muliibus (we talk about this more in section 1.2.5); it includces ‘l'::
any waiting time imposed on a Ringbus access by the Ringbus arbiter. e

Wc have just assumed ihat all Multibus accesses have the same distribution. We now cxam- :
inc this assumption in more detail. In the absence of traffic on the TISB ports of the global (
memory boards, all Multibus accesses would actually have the same access time distribution, :'_:C'.
However, since the boards are dual-ported, traffic on one port of @ memory board affects traffic ~
on the other port. ‘Thus Multibus accesses may have different access time distributions depending \
on the memory board accessed and the traffic intensity on the board's HSB port. "There are two ‘: t
different cases to consider depending e the destination of a Multibus access. .::: )

Case 1: ‘The destination is a local memory, in which case some pracessor connects to the ,-:.
HSB port of the memory board. In this case the Multibus access time can be greatly affected by S“*\-
the HSB traffic on the local memory board from the processor - compare Figures A4 and A5 in :-': “
Appendix A, :::;

Case 2. ‘The destination is a global memory. In this case the HSB port may cither be Nach
unconnccted or connected o the RIB. A comparison of 1Kigurcs A4 and A.6 reveals that the ‘,,::-
aceess time s essentially the saine tor these two choices of HSB connections. :,_
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We conclude that if the majerity of Multibus accesses are to global memory, then the access
time distribution is essentially the same for cvery access as we assumed carlier. Finally, we note
that a comparison of Figures A9 and A.10 in Appendix A reveals that Ringbus access times are

only slightly affected by the traflic intensity on the Multibus port of a global memory board.

We assume that reads and writes have the same access time distribution. "This assumption is
supported by the results in section 3.3 of Appendix A: for Multibus accesses, the access time distri-
bution for reads and writes differ insignificantly and for Ringbus accesses, the access time distribu-
tion for reads and writes differ significantly. We ignore rcad-modify-write accesses, since they usu-
ally occur infrequently compared o reads and writes, (The cffect of read-maodify-writes can be
included by incorporating access times ncar that of rcad-modify-writes in the access time distribu-
tion for rcads and writes.) We assume that byte and word accesscs have the same access time dis-
tribution. This assumption is again supported by the results in section 3.3 of Appendix A.

Just as the traffic intensity on the HSB port of a memory board affects the Multibus access
time of that board, the traffic intensity on the Multibus port of a memory board affects the HSB
access time of that board. Since the processing time distribution implicidy includes the HSB access
time of its associated local memory, the processing time distribution of a processor depends on the
traftic intensity on the Multibus port of its local memory. However, since the processing time dis-
tribution is an cxogenons input and puossibly difierent for cach processor {adthough we assume it o
be the same for cach processor in Chapter 2 and 3). we can simply accommodate any such depen-
dencies by using an appropriate processing time distribution,  In addition, the argument which we
presented abuve for the access time distribution will work to some extent for the processing time
distribution (we can't be sure of the extent since we haven't made any mcasurcinents of the ctfect

of Multibus port traffic on the processing titme distribution).

‘The processor maodel presented so far in illustrated in Figure 1.10.

Multibus
" ulti
access
p
gS/é 1)
; : counter:
. Py clockwise
v Ringbus 1
accons Dy o
L J .
. > clockwise KON
. .'I -l
..:‘.:: ]
P : J:'\"

Figure 1.10: Processor maodcl
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The one remaining embellishment of the processor model concerns long word accesses. 'The
access ol a 32 bit long word involves two consccutive word accesses on the 16 bit wide data paths
of Concert. However, the two word accesses on the Multibus are not neeessanily consecutive sinee
a processor docs not maintain mastership of the Multibus between them. After the first word
access of a long word complcetes, a processor waits some amount of time, which we call the
rccovery time, before requesting the Multibus for the second word access of the long word. Other
processors may scize the Multibus in this time and causc the sccond word access to wait cven if
the first word access did not wait. Since a long word access consists of word accesses, we can cer-
tainly incorporate long word accesses in the processor model as presented so far. However, this
may not be a good model - especially if a processor gencerates a lot of long word accesses - sinee
the processing times in such a model are not correlated with the tirst word access of a long words
when in reality the processing times are strongly correlated with the first word access of long

words.

We add a fourth phase - recovery - to our processor model to create an alternate model for
long word accesses. In this model we assume given that a processor geins mastership of the Mul-
tibus for a memory access, the access represents the first word of a long word access with probabil-
ity B and a rcgular byte or word access with probability |--8. Given that the aceess does
represent the fiest word of a fong word access, the processor generates a request for the second
word of the long word after a rccovery time denoted by ;. This second word access has the same
destinaiion - Multibus or Ringbus slice - as the {iist word access. Again, we assumic that ¢, is a
randont variable with some given probability distributior. A more precise definition of ¢, in terms
of Multibus signals is given in section 2 of Appendix A. ‘This alternate processor model is illus-

trated in Figure L1

Accessing

Wailing Wailing

IYigure L.11: Alternate processor model
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1.3.2 Mijor Assumptions
The major assumptions which we make throughout this thesis are:

1. "The random variables 7, and ¢, for cach processor arc stationary (i.c. their probability distri-
butions arc independent of time). We also assume that the probabilitics 8, ¢, and /),R” for
cach processor are independent of time.

2. Concert is an crgodic system - i.c. long tcnn time averages converge to the values computed
for stochastic stcady state.

3. Each processor model is entircly independent of all other processor models and everything
clse. More precisely, all processing and access time random variables, 7, and /., arc stochasti-
cally independent of cach other and cverything else. Also, all other probabilities 8, ¢, and

/;,-R Bare stochastically independent of cach other and cverything clse.

4. The overall modcl of Concert is in stochastic steady statc.

‘The independence assumptions in 3 simpiify the models. Various dependencics of the ran-
dom variables can be included in the models (as discussed in section 2.10.4) but doing so increases
the number of states and complexity of the modcls. Furthermore it is not clear at the present time
what the dependencics are and how significant they arc. Certainly factors such as the programs
run on the system, the language in which the programs are cxpressed, and the distribution of the
srograms about the system influence the number and magnitude of the dependencies, but how
docs one intelligently express them in a nodel? Dealing with such questions and the various
dcpcndcncics is beyond the scope of this thesis. Instead, we adopt a conservative approach: we

assume that there are no dependencics and determinge the performance as predicted by these sim-
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ple models. Future rescarch can be devoted to developing more detailed models o incorporate \._:
additional factors. ‘The performance predicted by the models with the independence assumptions KOS

»".‘

. . . . A 4
can be used to bounds the performance predicted by the same models with dependcencies. Thus poa
L
the independence assumptions allow simple models that yield bounds on the performance of more -
~T
complex modcls. e
L . . . . : AN

Ways to relax the assumptions in 1 and 3 are discussed in section 2.10 in relation to the Mul-
tibus model. S
™

-
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1.3.3 Factors for Study AR

A

"The factors we study in this rescarch are: et

A

. . . . . -\.s"

1. "The processing time distribution. S
2. The Multibus access time distribution. (The Ringbus access time distribution is an cquivalent BANE
madel of the entire Ringbus from the perspective of a processor on a Multibus and thus it is o
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dictated by the Ringbus. However, we do consider it as a factor for study in conjunction with AN
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the Multibus model in section 2.9.)

Y. The probabifity of a Ringbus access, ¢, and the Ringbus destination probabilitics ,:,»""”. We
also consider the probability of a long word access 8. when using our alternate processor

modcl.
. 'The number of processors on a Multibus, i.c. in a slice.
‘I'he number of slices.

The Ringbus access paths.

N o v s

The Ringbus arbitration algorithm,

1.3.4 Overall Performance Metric
We usce throughput as the performance metric of the overall mmodel. We regard  the

throughput of a processor as the number of Multibus and Ringbus accesses completed per unit

L . 1 - . .
time. Thus the throughput of & processor is equal to ——— where 7, is the cycle time given by
leye .

'—or :l-p + ’_wl 4 B’_w2 (L4 BUA = ) gty + Y lapp).

T,‘.I denotes the mican waiting tume per Multibus request for a bytc, word, or first word af a long
word access and 1_,,.2 denotes the mean waiting time per Multibus request tor the sceond word of a

long word access. Lmp and 1, denote the mean access titne for Multibus and Kingbus accesses

. e . < | -, .
respectively. ‘The total throughput is thus -——= where 1., is the mecan cycle time for processor
p p P i (51 p
i€P Leye,

i and P is the set of all processors.

1.3.5 Decomposition and Integration

We divide the overall Concert system into a number of subsystems: one for cach Multibus
and onc for the Ringbus. Fach Multibus subsystem consists of all the processors, local memorics,
and global memorics connected to the Multibus. The Ringbus subsystem consists of the Ringbus

arbiter and everything connected to the RIBs except for the Multibus. This definition of the sub-

systems is illustrated in Figure 1,12,
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Rin * o o

@:1 IM|oe .@# |_.M.| Gi.M (LS8 \
]
I L 1 RIB | @

Multibus \
-— -

Multibus Ringbus

RIB ) e ®

Figure 1.12: Subsystem definitions

Note that the global memory module connected to cach RIB is included in the subsystem for the
corresponding Multibus and in the subsystem for the Ringbus - we view it as being shared by the
two subsystems. ‘Thus there are wo poiats of interaction between cach Multibus subsystem and
the Ringbus subsystem: the Multibus connection to the RIB and the global memory connecied to
the RIB. However, (he interaction threugh the slabal memory connected o the RIB is especially
weak,  Mcasurcments reported in section 3.3 of Appendix A reveal that the access time distribu-
tion 1or accesses via onc port of the global memory connccted to the RIB is hardly affected by
heavy loading on the other poit of the global memory. (Compare Figures A4 and A.6 and Vig-
ures A9 and A.10.) We ignore the interaction between Multibus and Ringbus subsystems through
global memory in the rest of this thesis. The single remaining point of interaction between cach
Multibus subsystem and the Ringbus subsystem falls on a natural hicrarchical boundary and thus

represents a natural demarcation point between the subsystems.

Figure 1.13 gives an abstract view of the overall system.
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3
[Ny
We can regard cach subsystem as a black box. Each black box can be represented by an R
',
cquivalent lumped model, just as a black box in an clectrical circuit an be replaced by its 'Thevenin "-
- . . e P . . -~ . . . . -\.
cquivalent circuit. ‘The ‘Thevenin equivalent model of the Multibus subsystem is a single processdr _..::
medel of the sort described in section 1.2.1. This single processor represents the characteristics of .
Lo
the KRingbus accesses {romn the entire Multibus subsystem. et the interval between the completion T
of onc access on the Multibus with a Ringbus destination and the start of the next access on the c
- ‘.
Muliibus witli a Ringhus destination be called the Ringbus spacing. Then the piocessing time dis- N _'l-
tribution of the single processor equivalent of the Multibus is equal to the prubability distribution . ‘
. . . . e
of the Ringbus spacing. We make no distincdon between word and long word accesses for the o
A
Ringbus access spacing: thus we take 8 =0 for the single processor. The probability of choosing ISR
. L .. . . C [y
Ringbus destination ¢ in the single processor model, which we denote by p; Mheqs i cqual to the ';\
probability that a Ringbus access in the Multibus subsystem is for destination 7. Finally, we have o
N
¢ =1 for the single processor cquivalent. ‘The access time distribution is given by the Ringbus Vg
maodecl. ‘The Thevenin equivalent model of the Ringbus subsystem is some access time distiibution RN
LSRN
for cach Multibus-R1B connection. This access  img distribution for a connection is the distribu- \_';-
‘-
tion of the tme from the occurrence of a Ringbus request to completion of that Ringbus access T
S
. . kY
for all Ringbus requests on that connection, :\{
Py

o,

We decompose the overall model of Concert into Multibus and Ringbus madcls. As shown

in IFigure 1.14, Thevenin cquivilent models are used to represent the other models connected o a

particular model.
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Muliibus
subsystem

Multibuy

Ringbus

Multibus

subsystem

Mullibus
subsystem

Ringbus Single
Multibus access time processor
- distribution cquivalent
Muitibus model of Multibus

Ringbus modcl

Figure 1.14: Decomposition into models

Given some Ringbus access distribution, the Multibus model can be analyzed. Likewise,
given some processing time distribution and Ringbus destination probabilitics, the Ringbus modcl
can be analyzed. Hlowever, the solutions of these decomnposed models do not necessarily
correspond to the solutions of the subsystems in the overall system since the models are depen-
dent. ‘Ihe Ringbus access time distribution is given by the Ringbus modcl, which depends on the
single processor maodel of the Multibus, ‘The single processor model of the Multibus is given by
the Multibus maodel, which depends on the Ringbus access time distribution. Integration is the
process of solving the models such that all these dependencies are satisficd. In a sensc, integration
amounts to matching the boundary conditions - i.c. interactions - between cach pair of modcls to

obtain a coherent overall model.

We perform the integration iteratively,  First we assume some Multibus single processor
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model and some Ringbus access time distribution. ‘Then we solve the Multibus and Ringbus
models to obtain a new Multibus single processor model and a new Ringbus access time distribu-
ton. We analyze the models again to oblain updated models and repeat until the improvement on
successive iterations is sufficiently small. We do not discuss the the existence and uniquencss
issucs associated with integration. It should be clear later that in our casc integration Icads to a

uniquc solution.

o
e
Wc make a numbcer of assumptions and approximations to simplify integrating the modcls: ::.:-..
1. Wec assumc that the Multibus modcls arc identical in cvery respect: cach has the same o
. . .
number of processors and all the processors are identical. Y

2. We assume that the Ringbus maodel is syminctrical with respect o cach Multibus.

» s

LN

These two assumptions mcan that only one Multibus model (and the Ringbus modcl) needs

to be involved in the integration,

5 4 45
L4

3. Wec approximate the processing time distribution of the single processor model of the Mul-

. e e ~
tibus by an cxponcential distribution. -,
B A

4,  Wc approximatc the Ringbus access time distribution by an exponential distribution. :J:
r e

oy . . . . . . .
I'hese two approximations case the analysis of the models. Since an exponential distribution ;-.:

is completely specificd by its first moment, these two approximations also considerably case the

)

integration of the modecls, since the integration now cffectively reduces to tirst moment matching ::*}’
“w

. . . . . . . . NG

(i.c. we just have 10 detennine the mean processing timie of the single processor maode! of a Mal- KN

o

tibus and the mean Ringbus ceess time). :::

Of course, these assumptions and approximations limit the wpplicability and accuracy of the
integration. ‘The accuracy of the performance predictions obtaincd via integration of the models is

asscssed by comparison with simulations.
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1.4 Previous Work

Singlc bus multiprocessors tike the Multibus subsystem have been studied by many. ‘the
basic quecucing system formulation of the Multibus model in Chapter 2 has appeared and has been
studicd in many guiscs. It appcarcd as a machine repairman model as carly as 1935 {K2]. With
the advent of Kleinrock's popular volume [K3). the M/M/1//N model of the basic queucing sys-
tem has become a classic. Jaiswals' [J1]. or alternatcly Benson and Cox’s [B2]. solution of the
M/13/1//N modcl is also well known. ‘The theory of product form qucucing networks which we
apply is well known, although we utilize Kelly's powerful and clegant quasi-reversibility approach

[K 1] o queucing networks rather than the more well known local balance BCMP approach [B1].

We arc not aware of other studics dealing with our particular extensions to the basic queuc-
ing system modcl of the Multibus. However, the extensions are simple and the results we obtain
follow from straightforward application of product form queucing network theory, so others may
have derived similar results. ‘The specific recursive solution technique we discuss for the
PH/PH/1//N model is, to the best of our knowledge, new, although Herzog, Woo, and Chandy

[H2] have alrcady outlined the solution of general queucing systems by recursive methods.

The Ringbus subsystem, on the other hand, is a novel interconnection scheme which, to the
best of our knowledge, was not studied (or conceived) before Anderson [A2]. Anderson focused
on the design of a workable Ringbus: he only performed the most rudimentary simulations (sec

footnote in scction 1.1). We study the optimum performance obtainable with a Ringbus. \Wc for-

mulate the Ringbus arbitration problem as a Markovian decision problem and treat it by the well

known technigues of Howard [1H14) and Odoni [02).

The decomposition/integration approach to modeling Concert was inspired by Courtois [CS].

The techniques applicd in this approach are standard.
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1.5 Overview of Thesis

We study the Multibus model in detail in Chapter 2 and lay the foundation in section 2.9 for "'.::
lawer integration with the Ringbus modcl. In Chapter 3 we study the Ringbus model. We concen- v
tratc mainly on the optimum performance of the Ringbus and the arbitration algorithm which >

achicves this performance. In Chapter 4 we integrate the Multibus and Ringbus modcls and make

»
-

a few performancce predictions to demonstrate the integration technique. We compare these pred-

e,
I-!

ictions to simulation results. in the remainder of Chapter 4, we present the results of computer

"-<

r
-
oa
>,

simulations of the overall Concert model.
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2.1 Introduction "
»
. . . . #IN]
In this chapter we study the Multibus subsystem in detail. We use the processor maodel Q:
: . . L . . hS
described in scction 1.3 to construct various increasingly complex models of the Multibus. We KX
assume, as mentioned in scction 1.3.2, that all processor models are stationary and independent. IS
e
To case analysis, we assumce in addition that all processor modcls are identical in every respect.
e extension to non-ideniical processors. discussed in section 2.10.1, is straightforward but :-\.
increases the complexity of the analysis withoul necessarily coentributing much insight. P
. U
When all processors are identical, the mean cycle time of a processor, £, is the same for Y,
cvery processor. (This follows from symmetry arguments.) Thus the throughput of the Muitibus is ,
f
. N . ol
given by —— where N is the number of processors and vl
leye QY
-
.- N
hCY
- - - - - - >
leye =lp + 1, # Bl + (1 + BN = ¥)lam + Vlarp ). N
7,9] denotes the mean waiting time per Multibus request for a byte, word, or first word of a long -17;-'
- - . i
word access and lw, denotes the mcan waiting ime per Multibus request for the second word of a ANy
RNy
- - A
long word access. fyp and £, denote the mean access time for Multibus and Ringbus accesses ;-f_':‘
respectively., -
- i RN
Since ty, and 1, arc the only paraincters which determine the throughput of the Multibus ::
\
which are not cxnecnous inputs to the Multibus modcl, the performance metric for the Meltibus \:
cffectively reduces io the pair (l_wl.l_wI). In this chapter we take the performance metric to be the }";,
mcan total waiting time per cycle defined by r_,,.r =ty #/ﬁ“z. This gives a single quantity for the "‘3"
X performance, as with throughput, and is more closcly related to the Multibus modcls than ‘g
‘]
: "
‘ el
; v
N
I,
» gy .F'.l' -‘,v. ORI \‘. P\ TLATAFA LIS J -F P T S T e Y e T L s,
"l' 's.c‘ 4, l':'n J“d (MR, Xy ‘ YN \" J\' \' \ -' -’“ . \' -"c-r-.-" N S " - 'f?-"’“




44 Multibus Models

throughput.

Alt the processors on a Multibus and the Multibus arbitration circuitry are synchronized by a
master clock with a 100nsce period (one master clock per Multibus). ‘Thus the Multibus subsystemn
inherently operates in discrete time, We model this discrete time operation with continuous time
modcls to take advantage of the simple, powerful, and well developed modcling mcthods available
in continuous time, such as product fonm queucing networks. It is argued in the following para-
graphs that there is not much loss of precision in this approach.

We arc not interested in modcling the Multibus at the level of the Multibus clock.  Such
detail is unnecessary for our purposes. Furthermore, any modcel based on the state of the Multibus
at cvery rising edge of the Multibus clock would be uawicldy due o the large number of such
states required. Rather, we arc interested in modcling the Multibus at the cvent level. We define
an cvent to be a request for a Multibus access or the complction of a Multibus aceess. (We do not
consider the initiation of a Multibus access o be an event since cither it is equivalent to a request
for a Multibus access if there ar¢ no other Multibus accesses pending or in progress or it is
cquivalent to the completion of a Multibus access if a Multibus is in progress. Similarly, we do not
consider the initiation or complction of processing to be an event since they are cquivalent respec-
tively to the completion of a Multibus access and a request for a Multibus uccess). Because the
Multibus actually operates in discrete time synchronous with the rising edges of the Maltibus
clock, the time between successive cvents is the somie integer multiple of 100nsec and one or two
or more cvents can occur simultancously. In modeling the Multibus in continuous time at the
event level, we make the following two approximations,

1) We assume that the time between stccessive events can take on continuous valucs,

2) We assume that only one cvent can occur at a time.

The first approximation introduces a maximum crror of £50nscc in interevent times. Since in
the actual Multibus the processing time is at Icast 600nsce and the access time is at lcast 1000nsec
(scc Appendix A), the loss of precision introduced by the first approximation is small. For the
sccond approximation, we note that the probability of two or more events occurring in the same
Multibus clock period is small. Thus there will probably only be a very small Joss of precision due
to the sccond approximation. Therefore there should not be much loss of precision introduced by
clecting to model the Multibus in continuous time.

The Multibus subsystem can be modeled as a gucucing system with a finite humber of custo-
mers, Consider the case in which ¢ -0 and B8 -0 - i.c. only Multibus accesses and no explicit
treatment of long word accesses - for cach processor model. Denote the number of processors by
N. We can represcut the operation of cach processor by a customer which visits service centers

(scrvers). Once a customer arrives at a server, it reniging there for a peried of tine governed by
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Multibus Modcls 45

the scrvice time probability distribution tor that server. lct there be N servers, called processor
servers since they represent the N processors, cach with an identical service time distribution cqual
to the processing time distribution. et there be one server, called a Multibus server since it
represents Multibus accesses, with its service time distribution cqual to the Multibus access time
distribution. (Since all Multibus accesses have the same access time distribution, it is sufficicnt to
have just onc server to represent a Multibus access.) Finally, let there be no more than one custo-
mer in service at a scrver at any instant and let there be N customers.

Fach of the N customers behaves as follows. A customer visits a processor server and
remains there for some processing time after which it joins a queue of other custoiners waiting to
visit the Multibus scrver. When the customer cventually visits the Multibus server, it remains there
for some access time and then it returns to the same processor scrver.

This processor-queuc-Multibus  cycle of a customer represents the  processing-waiting-
accessing cycle of the processor model (with ¢ =0 and 8=0). The finite customer qucucing sys-

tem is pictured in Figure 2.1 below, The circles represent servess.

—
o /
Multibus
_)Q 1'CES Queue

Figure 2.1: Finitc customer qucucing system

To faithfully modcel the operation of the Multibus arbitration circuitry. the queucing discip-
line at the Multibus scrver should be round-robin. However, to case analysis, we will assume that
this queucing discipline is first-come-first-served (VFCIS). Interestingly, there is no loss of precision
with this assumption. Since the Muitibus server is work-conscrving (i.c. the scrver is always busy
while there remains work for it to do) and since all customers arc identical (i.e. same processing

and access time distribution for cach customer). the mean waiting time per access on the Multibus,

lw.f is the same for both queueing disciplines [M1]. Of course, the waiting time distributions will

¥ {,, is the mean waiting ime per access for iy access on the Multibus - byte, word, first word of long word,

and sccond word of long word 17 8 == 0), I—w - ;Wl’ ln gereial ;;‘li,—‘“" S0 7,, x’—wx:'t’_wz
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46 Multibus Modcls

not nccessarily be the same (intuitively, onc cxpects the variance of the waiting time to be greater
with the IFCFS disciplinc than with the round-robin discipline). but this doesn’t matter since our
performance metric just depends on the mean waiting time, 1,,.

We call the finite customer qucucing system, depicted in Figure 2.1, with a FCFS qucucing
disciplinc, the basic queucing modcl of the Multibus. In later sections we extend this basic qucuc-
ing modecl, known as the machinc repairmen model in the queucing theory literature, to accommo-
datc =0 and B8#0. A convenicnt notation to describe the basic qucucing model is $1/.9/1//N.
S and $, represent symbols denoting, respectively, the processing and access time distributions.
The 1 indicates a single server queue and N indicates the total number of customers. Some com-

monly used symbols arc M for memoryless (i.c. exponential), 1D for deterministic, /, for r stage
Erlangian, and G for general. Thus M/M/1//N denotes a basic queucing model with exponcntial
processing and access times and N processors.

A rather exhaustive analytical trcatment of the basic queucing model with different process-
ing and access time distributions is presented in section 2.2 through 2.7. Scction 2.2 dcals with
deterministic processing and access times. Scction 2.3 characterizes the gencrai behaviour of 1, for
probabilistic processing and access times. Séctions 24, 25, and 2.6 deveclop results for the
M/M/1/7/N, M/G/1//N, and G/M/1//N modcls respectively. Most of section 2.6 is devoted to
describing the known results for a class of quencing networks with convenient product fonn solu-
tions. These results arc heavily utilized in scctions 2.8 and 2.9. Scction 2.7 piesents a recursive
technique for handling general processing and access tine probability distributions. This is
helicved to be the first demnonstration of a reasonable solution method specifically for the
G/G/1//N modcl.

Gencralizations of the basic queucing model to handle 8#0 and ¥ #0 arc covered in scc-
tions 2.8 and 2.9. Scction 2.8 treats the casc with 8#0 and ¢ =0 and scction 2.9 treats the genceral
casc with B#0 and ¢y#0. Scction 2.9 discusscs the decomposition of Concert into Multibus and
Ringbus modecls and develops the hooks for the later integration of these two models. Specifically,
the single processor cquivalent of the Multibus is developed and relutions yiclding its parameters
arc derived. '

Lastly, scction 2.10 discusscs the relaxation of the four major assumptions of 1) identical pro-
cessors, 2) simple processor model. 3) stationary processor model, and 4) independent processors.
‘The most important sections in Chapter 2 arc 2.2, 2.3, 2.4, 2.8, and 2.9. Scction 2.6 is also impor-
tant, but only as a primer on product form solutions of qucucing networks for scctions 2.8 and 2.9.

Scctions 2.5 and 2.7 are. in somg sense, icing on the cake.
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Multibus Modcls 47

2.2 Deterministic Model
In this first model, both 1, and 1, are deterministic quantitics.

Initiatly the independent processors are unsynchronized. However, duc to the determinisim of
fp and f,, cvery time (wo or more memory requests occur at the same time that the bus is
currently in use, the piocessors originating those requests arc synchronized with cach other and
with the processor currently using the bus. The synchronization does not occur at the instant of
conflict but rather at the instant the access in progress terminates and the request at the head of
the FCIS gucue waiting for the bus begins its access. At this instant, the two respective proces-
sors are synchronized so that the cycle of the onc just beginning its access lags the other by exactly
1,. Similarly cach processor which has a request in the queuc is synchronized so as to lag cxactly
l; behind the processor of the previous access. Since /4, is also deterministic and the samne for

cvery processor, the synchronized processars will nake their next requests at intervals of .

Theorem 2.1

With independent identical processors with deterministic processing time 4, and deterministic
access time ¢, served by a single bus in I'CES arder, the waiting time per request after at most two
cycles of every processor is the same for cvery request. Morcover, after at most two cycles of
every processor the FCIFS queue is cither alwavs cmpty or always noncmpty at the instant a
request arrives at the queuc.

‘Fhe proof of this Theorem is given in appendix B,

By construction £, —0 when N, the number of processors on the Multibus, is onc. T.et N be
defined as the saturation point: in the steady state for N < N ‘. 1, =0 (corresponding to the
qucuc always cmpty when a request arrives), and for N > N ° t, > 0 (corresponding to the
qucuc always noncmpty when a request arrives). This saturation point is the maxitnum number of

processons for given £, and £, that the bus can support in steady state and maintain ¢, =0.

The maximum number of processors that the bus can handle with zero wait time for a
request is oae (for the bus in use) plus the maximuin number of additional processors that can be

processing, but not waiting, while the onc processor is currently using the bus. "This maximum

number of processors is given by | = |." Thus V =]+ L.
I(l ’a

“ 04 . - . e .
FFor cach processor added above N, all processors will share equally (after initial transients

t |.x denotes the smallest integer less than x.
¢
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48 Multibus Models

dic vut) the wait incurred by the addition of cach processor above the saturation point, if all pro-
cessors are identical and bus arbitration is FCES, o find 1, for this case. we may cquale the
arrival rate of requests to the bus system o the service rate of reguests at the bus system. We
have then:

N 1

Up +1g +1,) 1,

from which we obtain 1, = Nit, - (1, +1,).

The wait per request normalized by the access time is

{ {
XN (P-4 1)
la la

. . - - . . - L4 .
At this point (and in the sequel) it is more convenient to consider N and A as continuous rather

t
than discrete quantities. The saturation point is thus redefined as N =Ly Although the dis-
! ’ll

. - . L4 . P .
cussion will consider ¥V and & as continuous quantitics, these quantitics should be understood to

be in fact discrete whenever they are given a physical interpretation.

. t N°
Substituting for N, we obiain - = (/:}-—N'.x E xa.

la

behivior of 1, in the stcady state for the detenninistic case (see [figure 2.2).
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Multibus Modcls

2.3 Prohabilistic Model - General Rehaviour

We now consider ¢, and 1, to be stationary random variables with given probability distribu-

tions. We assume that the randoa variable ¢, for cach processor and the random variables 1, arc

independent of cach other and all other randonm variables as discussed in section 2.1. We also

make the reasonable assumption that the random variables 1, and 1, have finite means i.c.

(1,100 and £[1,]< 00,

In addition to these assumptions and those in section 1.3.2 we make the following existence

and ergodicity assumptions in this scction.

kxistence and Krgodicity Assumptions

1

We assume that the mean waiting time per request, 1,,.. cxists. More preciscly, we assume that a
stationary probability distribution exists for 1, (since 1, is defined in terms of its probability
distribution function). 1.ct the waiting time of the #™ request to enter the queue be denoted
by 1 so that {Iwn}, n2>1, is a sequence of the waittng times of successive requests. The
assumption means  that nleooI'r(lwn <y) cexists and equals some function W(y) where

I’r(lu.r <)) is the nrobability distribution of the waiting time of the n'™ request and W(y) is

the stationary probuability distribution for 4,,.

We assumc that the waiting time process is ergodic so that ecnsemble averages cqual (discrete)

. . - 1
tiine averages i.c. we assume that 7, == lim - 2, 1.,
n—»00 N i=1 !

We assume that the time averages necessary for any application of Little’s Law to the queucing

system described in section 2.1 exist. Little’s Law is the following statement:
Consider any system at which customers arrive, spend time in the system, and
depart. L.et N(r) be the number of arrivals at the system in the interval [0.7], /(1) be
the number of customers in the system at time ¢, and wy be the time spent in the
system by the k™ customer to arrive. If the following limits exist and arc finite

. N(r .
A= lim - (l average arrival rate
t—00

!

1. = lim »l—fl(s)ds, average number in system
1—00 { 0

1 L
W= lim — 2w, avcrage time in sysiem
k=0 k i)

then 1. =AW [SY).

These assumptions are necessary o ensure that the results developed i this section are

strictly correct, All the following sections in this chapter deal with spedific probability distributions
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Multibus Models 51

andZor specific situations for which these assataptions are valid in alt cases: thus it is unnccessary
to state them in the sequel. Howaever, this section deals with unspeciticd general distributions for

e

which it is difiicult to show that these assumpuions are valid in alf cases.

‘The purpose of the first assumption s straightforward - 7, must exist before we can talk
about it, ‘The sccond wssumption ensures that the average waiting time derived from an application
of Litle's Law cquals 1,,. The third assumption cnsures that it is valid to apply Little’s Law. Note
that if the time awverages in this third assumption cxist, then they must be finite since we arc deal-
ing with a closed queucing system. If onc is willing to deal with a time average for the waiting
time per request rather than an ensemble average (i.c. a mean), then only tive third assumption is
necessary. We present :md.pmvc some conditions in Appendix B for which the three assumiptions
arc valid.

Ve now consider the general behaviour of the mean waiting time per request, f,w subject to
the preceding assumptions. For a single processor we still have 1, —0. We can derive a gencral for-
mnula for 1, with N processors using Little's Law,

Let 7 denote the mean number of requests queued for service and currently in service on
the bus. fet ii, denote the mean number of processors which are processing (i.e. which do not
havze an outstanding request). et p denote the probability of the server {iie. the bus) being l)llS)".
et AYY ddenate the mean arviva! rate of requests to the bus. Since the systern is closed with a fin-

ite number of requests, AT s also the mean service rate of requests.

oy N - n - . e .
Then by Litle's Law we have: 1, - —- —¢,. Applying Little's Faw twice 1ore we have
3} A‘:/j a pp g

] e t, N-i {
p:w\”ffl and i, AT, Since i 44, =N we thus have —- = L 1 and /i,—-p—_ﬂ.
o P / 14 /

la p I
yiclding
{} N _7,_ N
h P I p

{
.‘ . . . . .
where we now define A = 41, Ihis same result can be obtained by considering the
’!I

. N . i, .
throughput balance equation - - ~——-~ p It follows from the definition given above that

o Fly 4ty U,

!
U<p <1, and thus -2 >N N°. For the deterministic case with ¥> N p- I and thus the
’ll

Q W . S ' .
lower bound for - is achicved by the deteeministic case. Note that as N =00, p—=1_ thus yicld-
la

!
. . . . . . . . w
g the smne asymptotic behaviour as derived in section 2220 For V<N we have that >0
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52 Multibus Models

ly
and this lower bound is again achicved by the deterministic case. Therefore X 2mux(0, N - N')
1(1

where the lower bound is achieved by the deterministic case. We summarize this result as a

lemma:

Lemma 2.1

The mean waiting time per request in the previously described gueucing system model with
stationary processing and access times with means i},<°0 and 1, <00 respectively and subject to
the previous assumptions is bounded from below by the mean wait per request in the deterministic

model with the same processing and access times 7, and 1, respectively.

Proof:

Given in the above development.

We can also say that w(N +1)—w(N)>0 (where we use the notation w(N) to indicate the
mcan wailing time 7,, in an N processor system). This follows since adding another processor can-
not cause the mean  waiting time to  decrcase.  In :1&dition. it scems intuitive that
w(N + 1)~ w(N)<1,: an arriving request in the N -+1 processor system ought to sce at worst one
more request in the queuc than it would in the corresponding N processor system. ‘The following

theorem justifics this intuitive feeling.

Theorem 2.2

Consider the queucing model described previously with stationary processing and access time
distributions with means 7, <00 and 1, <90 respectively and subject to the previous assumptions.

‘Then w(N +1)- w(N)<1, where w(N) denotes the mean waiting time in a NV processor modecl.

Proof:

Given in Appendix B.

The forcgoing allows us to conclude that the mean wait per request for any stationary pro-
cessing and access time distributions has a curve of the general shape indicated below. ‘The ran-

domness introduced by the probability distributions rounds the "knee” of the curve.
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| w aA
Normatised
mcan
waiting Asymplotc:
time i/l =N-N
pcr w -
request
0 5 >
1 N N

Saturatlion point # Processors

Figure 2.3: 1,71, vs. N for general probabilistic case

"the following scctions consider the behaviour of 1, for specific probability distributions and

for maodifications to the basic qucucing model.

2.4 Exponentiad Distribuied Processing and Service Times - M/M/Z1/7/N Model

The analysis of this M/M/1/7/N model is su'uightﬂlrwm'd.. Pollowing Kleinreck (K], we
define statc &k to represent & requests queued for service or in service (0 < & < V) resulting in
the (discrete state continuous time) birth-death Markov chain depicted in the state transition

diagram below.

NA__(N-DA(N-=-2A(N-k+ DA (N-KA A A
—>
- -
# 7 7 # u Iz »

A= p=Ui

Figurc 2.4: Markov chain of M/M/1//N model

The stcady statc  probabilitics. o,  satisfy  the  local  balance  cquations

TrPkk 17Tk 4 1Pk + 1k 0 < &k <N, where p; ; denotes the probability of going from state i

to j in onc transition. [rom the focal balance equations we obtain:

<k <N 2.1)
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‘The mean queuc length is ng = 2, (k -Dwy; and the average arrival rate to the queue is
k.::’,

N -1
Aors A E(N —k)n;. By Liule's Law. the mean queueing time (mean time wait in qucuc
k=0

- n
before being served) is ¢, = —2'I'he normalized mean wait per request is thus

oSS
& Nk -Dak
- & (N—k)
2 pl = i 2.2
i B TEINGT Nk @2

Ko —k -1t

here a = - = —.
w a N3

Results for the case a=1.0, 2.0, 5.0, and 10.0 arc displayed in Figure 2.5.
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2.5 Fxponential Distributed Processing and General Service - M/G/71//N Model

In this scction we generalize the M/M/Z1//N model of the previous section to include any
stztionary memory access (or service) time distribution. With a general service distribution, the
probability distribution of the renaining service time, given that there is a custemer in service,
depends on the time that the customer has already been in service. In such a case, the service
time distribution is said to have memory. Since a state must include all history or must summarize
all the history of the system relevant to predicting the future of the system, the state description of
whatever system the server is in must include the expended service time (or alternately, the time

remaining in the service of the customer), whenever a customer is in service.

For example, onc state description of the M/G/1/7/N system is (o let the states be (k1)
where & requests are queued for serviee or in service and the request presently in service has been
in service for time 1, 1<k <V, 120; and (0) when no requests are queued for service or in ser-
vice. ‘The exponential distributien has the special property that the probability distribution of the
time remaining is independent of the time expired so far. 'This memoryless property is the reason
wity the service time completed so far is irrclevant for the M/M/1//N model (which is why the
state in the previous section was simply (k). (0<k <N), and is the reason why the processing time

completed s¢ far at cach processor is irrelevant for both the M/G/1//N and M/M/1//N models.

The tact that time must be included in the state description camplicates the analysis of the
M/G/1//N model. We must now deal with an uncountably infinite number of states rativer than
the finite nuinber of the M/M/1//N model. ‘Three analytical methods are common for finding
the steady state distribution of the number of requests gqueued for service or in service, from

which we can then {ind the imcan waiting lime per request.

1. Stages

In this method, the server is subdivided into a number of stages where cach stage has an
exponential service distribution and only a single customer is allowed into the system of stages at a
time (jusi as only a single customer is in the original server at a time). Considering the entry and
cxit points of the server 1o be special stages with zero service time, the next stage a customer
coters after leaving the present stage is governed by a probability distribution which may depend
on the present stage. 'The mean service time in cach stage may also depend on the stage. Cox
[C4] has shown that it is possibic to synthesize any probability density which has a rational Faplace
transform by a system of stages as just dc:s'crihcd.T Cox has also shown that the system of stages in

Figure 2.6 is canonic in that it captures the full generality of densities which can be synthesized by

T If complea values are permitted for the ciponential paramceters. (Reeall that an exponential disttibution is ful-
ly charcterized by a single parancter cqual to the recipiocal of the mean )
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Multibus Models 57

the method of stages.  In particular, fecdback and/or feedforward paths add no further generality.,
It is somctimes convenient to consider series-paraliel or parallel-series arrangements of the stages,

rather than the ladder arrangement in Figure 2.6.

with paramcter g,

Ve U Wen WY YU Won U

[ 4
ﬂl dz GJ [ 4 ® a. a ® ®

I15xponcminl service time sage

v

Iigure 2.6: Canonic ladder arrangement of stages

The advantage of the method of stages is that the state space is now finite, or at worst count-
ably infinite. This arises because cach stage in the server is exponential and thus it suffices for the
state to include just the stage in which the customer is, rather than the time completed so far in
the service.

The resulting state transition diagram will be similar to that in Figure 2.6 in the previous scee
tion cxcept that the the states are more conveniently arranged in a two dimensional inanner and
transitions are not limited to nearest weighbours, ‘Ine equilibrium cquations rvelating the steady
state probabilities are casily obtained. Since these are lincar cquations it is in principle straightfor-
ward to find the stcady state probabilitics. Note these are the steady state unconditional probabil-
ities; they must be summed over the appropriate states to obtain the steady state marginal proba-

bilitics such as the number of requests queued for service or in service.

The method of stages has three disadvantages,  First, closed form results are difficult to
obtain except in special cases duc to the complexity of solving a large number of simultancous
lincar cquations. “Thus it is difficult to determine how the result varies as a function of the input
parameters such as mean arrival and mean service times without recomputing the result for cach
sct of paramcters.

Sccond, the exponential parameter and next stage probability distribution must be found for
cach stage, preferably so as to minimize the number of stages required to represent a given proba-
bility distribution, This can be accomplished by matching cither the poles and zcroes of the
Laplace transform of the stage systeim with the poles and zeroes of the Laplace transform of the
given probability density or by matching polynomial coefficients of the two Laplace transforms
(beth amount to the same thing). In cither case, the matching involves solving a sct of nonlincar
cquations rclating the stage parameters, ‘The number of stages required is equal to the number of

poles in the laplace transform of the given probability density, assuming all pole-zero
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cN‘U 1
l") '
.}j
cancellations have been removed,  As might be imagined, certain interconnections of the stages .t)
make the solution of the simultancous equations casier than others. While straightforward in prin-
ciple, finding the stage parameters vequires a suhstantial amount of work in the general case. NG
e
Y
pg e o .. . . . e,
'hird, only probability densities with rational Laplace transforms can be handled exactly in a )
e
finitc number of stages.  However, since any nonrational function can be approximated arbitrarily ':-'
. . . N . . . .'c“
closely by rational functions, we can in principle use the method of stages for any arbitrary (sta-
tionary) probability density. ‘The problem in practice is how to best approximate a given distribu- ’\"
tion by onc that has rational transform. ::‘\".-
-‘\."
Iy
o
2. lmbedded Markov Chaia
A3
In this method, the two dimensional state description (&,7) of the system is reduced to a onc tf*
oY
dimensional state description (k) by looking at the system only at sclect points in time. ‘These :\.:: ]
. . . . . . D,
puints must be such that given the number in the system, (k). at one such point, and the inputs -:,‘
Y n Wy
to the system, then at the next paint in time we can calculate the number in the system. Thus »
these points must implicitly include the time that has been expended on the customer in service. <
One set of such points is the serviee departure times - i.c. the time at which a customer com- -t::-;
pletes service. At a departure instant, the expended service of the next custoiner is zero (and the ."-.‘;,
L]
residuat service of the present customer is zero) and the time to the next depasture is given by the .
. . . . . . . . . '.\ "F-
unconditional service time distribution as long as at least one customer is leftin the system, It the oo
o,
. . . o _ . AR
system is emply, the time to the next departure instant is given by the convolution of the arrival ;_xj‘»
Y
. . . . . . . . . CaN 2!
time distribution (which is exponential with parameter NA for the M/G/V//N case) with the N
™
unconditional scrvice time dislribution.T —
%
- . . . l\ .\
I'he behavior of the system at the imbedded points - the departure instants - can be AN
-" --'
described by a Markov chain. Let the state of the Markov chain be the number of customers in e
f.'u'_'
the system immediately after a departure. “I'he transition probabilitics can be determined from the 2.7
arrival and service time distributions.  {'he steady state solution of the Markov chain gives the —
I. ..~
steady state probability of finding k customiers in the original system at the departure instants, but .-Z‘_.-:
. . . “ATA
not the correct steady state probability at arbitrary times between departures. (1t actually does AN
give the correct results at all times if the customer population N s infinite and the arrival time dis- t.. ~
tribution is cxpoacntial.) However, the mcan waiuing time, as we are concerned with in this :.;‘
N
chapter, is suflicicnt to determine the probability that the server is idle and this is casy to RS
?'!'f\
)
* ::\‘.\
By system we mean in this case the 1'CES queue and its server. _.'.j-.
¥ ANa™d
‘The probability distribution of the sum of two indepeadent random variables is the convolution of the two @
respective probability densities. NN
A
:-1':‘6'
RS
.:.- c
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o
\ l\ »
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determine. ‘Thus the steady state selution of the one dimensional imbedded Markov chain at
departure instants is sufficient to find the mean waiting time.

Other scts of points exist which may be used o derive an imbedded Markov chain but they
arc not as convenient since the expended service of the next customer will not be zero (otherwise
wc have the same set of points as before). This necessitates handling the messy case when a cus-

tomer docs not remain in service long cnough to reach the imbedded point.

The advantage of the imbedded Markov chain method is that general service time distribu-
tions may be handled cxplicitly and without solving for a myriad of parameters as in the stage
mcthod. ‘The disadvantage is again that it is difficult to obtain closed form results. ‘This is princi-
pally duc w all the bovkkeeping required to keep track of the number of "active” arrival genera-
tors in the finite population case. Such bookkeeping is unnecessary in the infinite population case
and cxplicit resulls for the mean waitng time (depending only on the mcan arrival rate and the

mean and variance of the service time!) and the waiting time distribution can be obtained.

3. Supplementary Variables
In this methad the problem posed by the two dimensional discrete-continuous stile space
(k.r) (for k=0) is attacked directly by solving the related differential difference equations. Closed
form results for arbitrary scivice ume densities can be obtained by- this method. We give the main
results below, from the derivauen of Jaiswal [J1]. Tet

p be the server utilization i.c. the probability that the server is busy

h be the mean busy period of the server (the mcan time interval between

the scrver being idle)

1 . N
X be the mean of the exponential processing time

1z be the service time (i.c. access time) with density £(1,) and mean 1,
Then

b =1, ~2||N7‘| ! (2.3)
i=0

(i)

ﬁ—[——(:—A—L . m#0
it 1=1"(iX)

where @(m) =
1. m =0

)
and 1°(s)= I'.'[c_""'lz fr' ~'""j'(l,, )i, the Laplace transform of £(1,).
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ol Multibus Modcls

By applying Littic’s Law twice we can detenmine the mcan waiting time (i.c. qucucing time)
per request, /. I'rom Litic's Law we have p= A, ﬁa where Agpp ==X X average number proces-
sors running = A(N -- L) and I. denotes the mean number of request in the FCES queuc or in

. ! 1 . .
scrvice. Thus 1. =N —-LP-=N ~ap where a=Lt =, Again froin Little's Law we have

1A fh Iy
1, = A 1a. Thercfore
Nty
1,
LN
y P P
Substiiuting for p, we obtain
Ly 1 . a
= =N-a-~1+=—=N~-N +— (24)
l, bA by

]

where by — =~ (the normalized mean busy period i.c. the average number of consccutive requests

Pyl

served without an intervening idle period).

{
o . - . . N a
Equation which should be familiar as just = in the deterministic case for N >N ‘ plus —-b_ -.
la N

I'quation 2.4 might lead onc to conjecturce that the maximum difference in mcan waiting
time per request between the M/G/1//N and detenninistic model (section 2.2) occurs at the knee
L4 g - . . . - -

N =N . The following lemma shows that this conjecture is indeed correct, in even a more general
. . * - e . .
sctting, provided N is an integer. ‘The treatiment must be more careful for non-integer & since
the queucing system model alfows only integer N, The general idea. however, still holds when N

is non-integer. ((The graphs have been drawn as continnous in N to emphasize the trends.)

Lemma:
l.et w(N) be the mean waiting time per request in a G/G/1//N queucing system with arbi-
trary processing and access time distributions with means 7, and 1, respectively. Lot wy(N) be
the mcan waiting time per request in a 1/1)/1//N qucucing system with constant processing and
access times i), and 1, respectively. ‘Then the difference w(N) - wy(N) is maximum at cither
. . . A
N-=IN JorN={N | where N =a+1, a=-"-.
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Multibus Models 6l A0
i
||.{
. i~
Proof: ‘,:
. o'
Consider ISNSN _
\5,1\-
IF'rom section 2.2 wp(N) =0 in this range. In additdon w(N /1) w(N)20 for \{.\
cvery N2>1, i.c. w(N)is nondecrcasing in N. ‘Thus w(N) - w;)(N) is maximum !
for IKNLN * when N s the largest integer less than or cqual to N " e NG
N=|we). Y
Consider N*<N: E-‘\.
e
. - o
From section 2.2 wp{N)=N --Nand wp(N +1)--wp(N) =1, in this range. In &"‘J‘
- L
addition w(N 7 1)-w(N)<1, by Theorem 22. let N° be the smallest integer
: A
greater than or cqual o N - i.e. N? = IN'I -and let w(N?) -wy(N?)=8. :C,
P
Then  w(N + 1) wp(N® + DSw(N%)—wp(N®)=68. By induction on :::.f
n=012--- wec have w(N°+n)-wy(N°+nm)<8 for all n2>0. Thus S}'.
w(N) - wp(N) is maximum for N' <N when N le‘ | _‘:-\\-
‘Therefore w(N) - wp(N) is maximum at cither N ::lN‘l or N -:[N". '_:: :
)
2
Remark: X
IrN"is noninteger these two points arc distinet and the one at which the imaximum occurs t:_"
b

dcpends on N - IN '| and w(N).

aE
&

&

2.5.1 Exponential Distributed Processing and Deterministic Seevice - M/1}/1//N Model

2,

".'
-

We now consider as a special case of the forcgoing a model with deterministic (constant) o~
mcemory access times. ‘This special case is interesting for two rcasons, ‘The first reason is that ""
memory accesses on the isoluted Multibus directed to the global memory have a relatively constant
duration. ‘There is still randomness associated with the access time due to such factors as read- "\:" \
modify-write accesses (which have a significantly longer access time than normitl read and write ::-:.:-:
accesses) and variations in the propagation delays of the logic circuitry and signal paths. If we ’\::
consider read-modify-write accesses to be so infrequent that they can be ignored, we can get some M
idca of the Multibus access time distribution by referring to section 3 of Appendix A. Roughly :';\
9% or more of the Multibus accesses to the global memory take 1.00 or 1.10 psec. Thus a con- :ﬁ'
stant access time scems like a rcasonable approximation in this casc. However, memory accesses el
on the Multibus directed to local memaory modules can vary over a much wider range (as indicated I J;
in Figurc A.S in Appendix A) due to the HSB traffic on the other port of the accessed memaory. ‘:::
Thus a constant access time docs not scem like a reasonable approximation in this case, :::‘

' 2
2
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62 ' Multibus Models

The second reason for comsidering the deterministic case is that the mean waitl per request in
the deterministic case provides a lower bound on the mean wait per request for alt M/G/1//N
maodels with the same mean processing and access times. ‘Fhus although the exact access time dis-
tribution may not be known (or may be too variable to be considered constant), we can still bound

the behavior of the mean waiting time.

Theorem 2.3

Given that the mean processing and access times arc the same in both the M/G/1//N sys-
tem and the M7/ 1//N system, the mean waiting time (qucucing time) in the M/G/1//N system
is bounded from below by the mean waiting time in the M/1)/1//N system.

Proof:
Following Price [P3], and rcferring to the M/G/1//N results presented carlier, we
have:
1,, is strictly increasing in /.,
1. is strictly decreasing in p,
p is strictly increasing in b,
b is strictly decreasing in (i), and
(1) is strictly increasing in the function r°(s).
‘Thus 1, is minimized when F'(s) is minimized. Now from Jensen's Incquality [Pl
p.434] 1 (s)= Ele V-s"‘l > e_s”"‘]: e—“". which is the transform of a deterministic
function. Therefore a constant service time of duration 1, gives a lower bound on the

mean waiting time among all distributions with the same mcan 1,.

All three methods mentioned carlicr for the M/G/1//N modcl have been applied to the
solution of the M/D/1//N model. Benson and Cox [B2] used the method of stages. They
obtained a closed form solution for a service distribution consisting of a cascade ot v exponential
stages (called an 1 stage Erlangian distribution and denoted by 7:,) and then ook the limit as
r—00._ Raskin [R1] employed an imbedded Markov chain. Jaiswal obtained the closed form solu-
tions presented carlicr using the technique of supplementary variables.  In addition, Ashcroft [A3]

has derived a solution for the M/G/1//N model starting with an expression for the mean busy

period.
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4 Multibus Models

The actual results for the mean waiting time per request in the M/D/1//N maodel are plot-
ted in Fagure 2.7 for the sanic cases s in the M/M/ZE//N model. (The data for this Figure is
taken from Ashetoft's paper.)  For purposes of comparison, the carlicr M/M/Z1//N results are also
platted. Note that the M/M/L//N and M/D/L//N results are very similar except around the
"knee™ of the curves.

We also obscrve the following:

For a given a, the difference in mean waiting time for the M/M/1//N and

M/1)/71//N models first increases with N, and then decreases with N Similarly, for a

given N, the difference first increases with a and then decrcases with . The mux-

. . - - .. . ” " 4
imum difference in the mean waiting times occurs close to the "knee” at N =N and

“
P
increases with N (in fact the maximum difference occurred at cither N :-IN'I or _,\:,
e
N = ,N 'I # 1 in the cases in which numerical results were computed). «i_\f'
.’ y
The validity of these obscrvations in the general case may be ascertained by examining the difTer- .
N
_ ~ 1 1 o
ence WNIMmaun = wNIyayn =e ————— ———- —) where e
by by N
M/MN/IN M/DN/IN -
/v ! o . o ¢
by =1+ E —s——---1]. (by is the normalized mcan busy period given by -
i=1 motl F “(mA)
. .,...
by = = - sce cquations 2.3 and 2.4.) oo
a R
A
: 1 corvicer I __ 1 i N -1 l-‘ m e
For exponential service: 1 (mA) = P thus by, v =1 z l I I et
ot _
—m | m P
. L . . m . -
For deterministic service: /7 (mA)=e @ . thus ——— - l=e® - 1=—+ 2,(-—), using -
F (mX\) a
m 00 l n K
. . . m m .
the serics  cxpansion  of e¢%  (ic. (- )= Z e ). and therctore
n-ah! A
EalS
- N -1 m -
bN,\I/IJ/‘.//N * 2 l ( ) ) . .
m *l a z
- . . » — - . . .’.
Rather than cxamining the difference WMy 8 - WN W o8 =AWN) divectly, it e
.
. . . WN D mnsmN N
i casicr o rewrite Aw(N) as l we e = UIW(N W and examine the ratio S
w(N W /namN ;:
“
[¢4
NN e &
— A
wWN e NN bNH/‘.I/l//‘V _ .
f—v\'f'~ S e R --=r,. -
. "
WNIMMDAIN NN I
bNu/lvl//N .
T~
S
::f. e
«."\"\'\."'-" AR Ay \ T N T T e T T T AN N . L
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"~
roe
e
< g _; =h =~ = R —00 b ‘ oL
For N =1, INM/M/I//N by Numrvn” =1 and hence r, 1. As N * bNAI/M/l//N and Ly
_ . . . . . b_Nu DAIN
[)NM,,| o0 (at different rates) and ¥ N =00; hence ry =l For NNy e —emmnm e,
% ) wd
! Nyt ssinin -
. . v — . . * ,
which is clearly greater than 1 for N> 1. Thus Aw(N) must incrcase and then later decrease with ‘-~
~
N A
. A
. o . . 9 ; , . I, . . . ~ N . . 7.--_
For small valucs of a, £ Nt sat rion and bNM/l)/l//N are large and hence r, ®1. For large values
of a, bNum/V/N~bNu/n/w.v and again r, =1. For all values of a, bNM/n/l//NZbNAI/M/l//N' In par-
. . i i i . " . ) . . . . L. ._'~
: S r, s of a. $ Co ! e
ticular, ‘)NM/I)/I//N>bNM/M/l//N and thus r,>1 for medium values of a. Since r, is continuous in
a, this is enough to conclude that Aw(N) increases with a and later decreases with a (although .
not necessarily monotonically). '--‘.:-.
':'..-
v N
o
2.5.2 Comments A
h-
It is difficult to say much more of interest about the M/G/1//N model without some _—
. Co L . .
knowledge of the aceess time distribution; indecd, the mean waiting tiine per request is completely ~_\:
N
specificd by the closed form expression given carlicr once the distribution is knowa, N,
~
. . . . , S
From section 3.3 of Appendix A we see that all access times must be in the range 1.02 psee o~y
to 182 psce (allowing for best and worst case propagation delays and tatlic on the other memory ~
LA,
port and assuming no rcad-modify-writes). One might conjecture thet because this access time dis- S
tribution is more "detenministic” than an cxponeniial one with the same mcan (and certainly docs NG
not have the long taiis o the cxpenential), the mean waiting tiine ought v be bounded from :-::
above by that for an cxponential distribution with the same mcan. ‘This is indeed the case as the fez
following argument shows. . e
Recall from  equation 24 that the mcan  waiting time per request is  given by '.}':
Iy . a O
—=N-N +-—, :
4, by POA
N -1 o
where by =1+ 2 l -1 e
I' (Y) v:','.
NG
[ e
. . oy W, . . . . .. e -
As discussed in the proof of Theorem 2.3, -~ is strictly increasing in 1 (s). Thus to show ~

la

Lo MM AN 21y iU suffices to show that I"‘(ix)“[/ﬂ[/‘///vZI"‘([‘)\) for all i and A>0.

- - L]
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Iheorem 2.4 A
'
l. . R . . . .
Let I 4p(s) denote the Faplace trunsformy of the probability dersity function f,,(x) with
. . .. P
mean X where fo(x) 0 for x § [eb] 0<a¢ and 6<2a. Lot F (s)yarnon denote the o4
Y
Laplace transform of the cxponential density function with (he same mean X. ‘then '3-‘
. - A
FASumnmsnZF apts) for s real and s 20. e
9.1
‘)
-~
The proof of this thecorem is given in Appendix B. For the case at hand a =1.02 and f.‘
‘. . “ - . X -“ .
b=182 <2a,thus I Ny v 21 ap(iN)) for every i and A >0, e
‘ . - . . e
Iheorems 2.3 and 2.4 imply that the mean waiting time for the M/G/1//7N model as ¢
presented in section 2.5 is bounded above and below by the MM/ //N and AML/DAN//N 54
. {‘
madels respectively, with the sanic mean processing and aceess times. “Pherefore a quick charac- ::-.
L] \
terization of the mean waiting time of the M/G /17N model with any access time distribution :ﬁ:
. .. S . . T
(obhcying the restrictions in “Theorem 2.4) can be obtained from the M /M /A//N and M/DA//N o
models. FFurthermore, by analogy with the Pollaczek-Khinchin formuata for the mcan waiting time o
e
. . .. R . . Cal
in the A/G /1 queue ¥ one would cxpect the rrican wailing time to vary approximatcly lincarly v
'J‘-
. . . . .. . . C e . 2 “.3 LN
with the square of the cocfficient of variation of the access time distribution given by € = 5. . G
X iy
However, as Price [P3] points out by means of example, this can be wisleading since the variance ‘
can be dominated by a few lopg access times which have little effect on the mean waiting time. fl-\-‘::
S
. . . . - . - 0 - Ty ~\ --
A reasonable model for the aceess time distribution is an r stage Erlangian distribution. Fig- T
N
urc 2.8 shows how the Erfangian density function varies with r, ',2:. ]
LSS
e
L
N
J‘\q"
ﬁ.-
M,
DA
::-‘.-:-
Sl
':-":l
-f,_
N !
Fme M/GAN queuc is an open queucing model (as opposed Lo tiie closed models considered in this chapter) -..\_.
with a Poisson arrival process and a general service process independent of the armval process. The mean waiting ‘.-‘-‘{_.
AN
_ . AN
_ px(1+CH i , o
time i the queue is 1, = ——2-(-~l- - —-)--— where arrivals occur at rate A, senvice has mean ¥ and vanaunee Oy. A
2 - . g
X p * "v g
R *
} oy
2N
o)
P
:.I‘:.r:
t{'u'
(RN
LS '!“
\“ n‘.'
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fx) ﬂ

Figure 2.8: Various r stage Frlangian density functions

For the M/FE,./71//N model it is casy to show that thc mecan waiting time per request is upper
bounded by that for the M/M/1/7/N, if the mean processing and access times are the same in cach

case. As above, to show it suffices to show that

1, D1
WM/MAIN="Wusb SN’

I".("A)M/M/I//N > I"'(iA)M/I:',/‘l//N for all i and A2>0.

r

.. a .. ra

F (iNmmamn == and F (iNysenmn ==
I+ra 4 i1+ra
r r

. a ra . . . . . .

Since — =] - for r =1 and | ——-| is strictly decreasing in r, the cxcrcise is
1+ a 1+ra t+ra

complcted. Note that in the limit as r—=00 the Erlangian distribution approaches a deter-

ministic distribution. ‘Thus I_,.WWWNZTWMH -
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o
2.6 General Processing and Fxponcatial Access ‘Time Distributions -- G/M/1//N Model :.:
We now consider the ¢ffect of the processing time distribution on the mean waiting time per LR
request. or this section we keep the service time distetbution exponential to facilitate cotparison >
with the carlicr M/M/1//N model and to determine the relative effect of changes in processing ::
and scrvice time distributions with respect to the M/M/1//N model. .’f
)
‘The G/M/1/7/N model could be solved using any of the three methods described in section "
3. However they all becomie cumbersome because whatever method is chosen must essentially be ::_
applicd N times since there arc N genceral distributions. 'The state description must, explicitly or ‘: 3
implicitly. contain the processing time completed so far at cach processor that is busy and the E;
number of requests waiting for or in service. ‘Thus there are anywhere from 0 to & continuous j. -
variables in the state description. ‘This leaves the imbedded Markov chain and supplciuentary .".'.:
variable mcethods hopelessly complicated for reasonable values of V. Dircet application of the E'\
method of stages is also very complicated. However, in the special case of the G/M/1//N modcl :é:
- due o the exponential access tisie distribution - the solution of the cquilibrium cquations has a ¥
very simple form., Tf
SN
!
2.6.1 P’roduct Forin Solutions \\;
ln cortain cases the steady-state probabilitics for a system of two- or more interconnected )
quenes hane the following form: § N
I et the veetor xy denote the state of queue £, and let o, denote the steady state probability :: .:
of that state when gueue 7 s inisolation. Then the overall, or glubal, state of the system is given A ":
by X (apxy....x,) Denote the steady-staie probability of global state X by wy. Then o~
)
my - ('ﬁw.l. where ' is a normalizing constant. ::_.::
P A
Any system in which the steady-state probabilitics can be expressed in such a form is said to L;L
have a product jorm solution. Product form solutions are extremely convenient in that onc can -
dispense with sohving the global cquilibrium equations; it is sufficient to solve for the steady-state ;::f:.::‘
probabiiitics for cach gqueue 1 solation. In the following we sutmmanize the main results knewn ::"'.:::
pertaining W product form solutions m queucing networks as described by Kelly {K ), s;\:‘
‘ Hhe principal result is the following: 'Q.‘\
* oy )
Suppose there are n queues (the gqueue is thought of as a black box here and includes the .:-:\
server for that gueuc) and a total of & ¢lasses of customers in the overall system. For cach queue Et..::
¢ assume that no maore than one customer enters or keaves the queuce at any point in time. et ".‘,
cach costomer i queue 2 belong o some chss b omthe total set of classes A () vearing that gueue T
and assuine that costomers cannot Change chss os thes pass through the quetc. 1 et the state of i';s:’-
N
A
RO

- -
‘
N

'f.f.'v'
W ]
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Multibus Modecls 69

queuc i at time ¢ be denoted by x;(1) and assume that the state information allows the number of
customers of cach class at the gucue W be determined. (f cach queuc 7 is quasi-reversible in isola-
tion, then the equilibrivm probability distribution has the product form given above,

A qucug i is quasi-reversible if:
D) its state x;(¢) is a stationary Markov proccess,
2) the arrival times of class & customers, K €K (i) after time ¢ are independent of x;(1) before or

at{,

3) the departure times of class k& customers, k €K (i) after time ¢ arc independent of x;(¢) at or

after ¢, and
4) the mean rate of class k arrivals and departures is cqual for cvery k€K (7).

If a qucuc is quasi-reversible, then points 2 and 3 imply that the arrival and departure

rocesses of class & customers are i cndent Poisson processces.
f class k customers arc independent P rOCCSSES.

Two types of qucucs are known to be quasi-reversible.  In both types, the arrival process of

class & customers is Poisson with rate A(k ). giving a total arrival rate of )\:2)\(/(). The first
k

type is Adistinguished by cxponentially distributed service times with the same mean service for all
classes of customers (although the mean may vary with the number of customers in the queuc).

Kelly [K1] describes this type of queue as follows:

Assume we are dealing with gucue i and let #; be the total number of customers in the

queuc.

(i) Each customer requires an amount of scrvice which is a random variable cxponentially distri-

buted with mcan pg.
(ii) A total service cffort is supplicd at the rate @;(n;), where @(n;)>0 if n;>0.

(iii)A proportion v,;(/.n;) of this effort is directed to the customer in position /, (1 </ <#n;). When
this customer completes service and leaves the queuc, the customers in positions [ £ 1./ +2....n;

move to positions 1./ +1....n; -1 respectively.

(iv)A customer arriving at qucue ¢ moves into position / (1</<n; + 1) with probability 8,(/.n; , ).

Customers previously in positions 1./ + 1,....n; move to positions [ -+ L/ + 2., ¢ 1 respectively.

The amount of scivice a customer requires at queue § is assumed to be independent of the
ameunt of scrvice the saime customer requires in other queucs and independent of the amount of
service all other customers in queuce i require. For example, a FCES queue with A classes of cus-
tomners, cach class with Poisson arrivals of rate A(k). £ €K and the same exponentiafly distributed

service for all customers can be described by:

1,11
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8(/n)- (l, ;:;” :l:

gln)=1
Quasi-reversible queucs of the first type (also called gencralized M/M/- queucs), can be described
by the state x(1)=(n.c(1)....c(n)) where n is the number of customers in the queuc and
c(N1LI<n, is the class of the customer in the I position of the queuc. ‘The state x(r) is a sta-

tionary Markov process with stcady-state probability

r AMc(/))
Ty = "I] - —!.—ﬁ-
where x is a normalizing constant {K1].
The steady-state probability of the non-Markovian state x'(l) A (). 2)....n(K)). where
n(k) is the number of customers of class & in the queuc. can be found by considering all possible

ways of arranging n customers in k classcs.

_ L P L Y T N 1 D (14}
et j:IaI“PU) a2 0N kPt P2 Pk @5)
pi = MK

B

Finally, the stcady-stute probability of the non-Markovian state x”(l):(n ). can be found by

sununing o, over all possible ways to arrange n customers.

1 n! (1) (2 n(K)
w =K lﬂ]--ﬁ—- [ I ] C Pk ’
x [j:l(p(_’) Ay sy s - sn(ky=a TOREY - (K
(whcere
() rn()+ - tn(K)=n
mcans

m)-0 n2)--0 n(Kh)=0

such that n(1)+ n(2) # -+ + (K'Y 1 atall times) yiclding
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The sccond type of quasi-reversible queucs is described by Kelly [K1] in a similar manner.
The description is the same as above except for;
(i) The service required by a customer is a random variable from an arbitrary distribution which
may depend on the class of the customer.
(iv)Same as above cxcept the symmetry condition 8(/.n; +1)=y(l.n; +1) is imposed for cvery
I=).n+1.

Qucucs of this sccond type arc called symmetric qucucs. For example, a server- sharing

qucuc (cssentially a round-robin qucuc with infinitesimal quantum size so all customers are ¢ffec-

. . . . . 1

tively simultancously in service) can be described by y(/n)=—,1=12...n: n 20, and @(n)=1.
n

A last come first served (1.CEFS) queue with preemption can be described by y(/.n)==1, I =n,

n=12,...and @(n)=1 for n20. IFinally, an infinitc server queue can be described by y(l.n) == n,

n2>1, and (p(n):'l', 1=12...n; 021

Note that a FCI'S qucuc is not a symmctric queuc. ‘Thercfore a IKCES queuc with anything
other than the same cxponentially distributed service for all customers (as described in the first
type of quasi-reversible queues) does not fit into the two types of quasi-reversible queucs just
described. Indeed, such FCES queucs are not guasi-reversible since the departure process at tme
1 is not independent of the state x(7) after ¢ (i.c. given the state 'deseribing the castoniers in the
quecuc and the service time expended on the customer presently in scirvice, some information
about the next departure time(s) can be ascertained).  As a cesult, no product form solutions are
known for such IFCIS queucs.

As for the generalized M/M/- queues mentioned carlier, we can describe a syminetric queue
by Markov process, find the resulting steady-state probabilitics, and then sum over various stites
to find the steady-state marginal probabilitics. Skipping the intermediate steps (which follow
dircctly from the stcady-state probability distribution given in Kelly [K1]), we have for the non-
Markovian state X (1) == (n.c({)....c(n)) (n and ¢(l) are as dcfined before) the steady state proba-

bility distribution

e M () ,. .
- A_:,-\I.‘ " :
¥ ,n. o(/) Lztc M)

where I[z(c (j))] is the mean service requircment of a class ¢ () customer.

For the non-Markovian states r’(/):'(n(l).....u(k')) and x”(/) (n). we get the same

results as before with p; and p now as follows:
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‘I'he only feature of networks of quasi-reversible queucs that has not yet been discussed is
the routing of customers within the network. The routing is formulated as follows:  upon depart-
ing from a queue a customer of class & joins class / with probability rk,.T By adding a sufficient
number of classes, routing can include dependency on previously visited queucs and classes as well
as on the initial class. For cxample, a deterministic route can correspond to cach input class. In
addition, routing can depend on quite detailed previous history (such as actual service times) pro-
vided that the ncxt class depends only on the present class and that the qucucs remain quasi-

reversible with respect to the classes.

The cffective arrival rate of customers of class & to the queucing nctwork is

A (k)= (k) ¢+ 2)\”” (Nry.. where A(k) is the arrival rate of class k customers from a source
!

external to the nctwork (external arrivals are assumced to belong to a Poisson process).  The
steady-state probability distribution of cach quasi-reversibic queue in isolation is computed assum-
ing the the arrival process of cach customer class is Poisson with rate given by the cffective arrival
rate of that class in the network, T'he overall steady-state probability distribution of the network is

the product of the steady-state probability distribution of cach queuc in isolation.
In the steady state the various classes of customers in the network can cither:

1. torm closed loops with no arrivals or departures, or

2. form no loops.

(Closed loops with arrivals and no departures and closed loops with departures and no
arrivais obviously cannot exist in steady-state.)

1f all classes of customers form no loops, then the cffective arrival rates are uniquely detined

vy A (k)=N(k)+ ZA"fI(l)r/k. In this case the network is said to be open and the normalizing
I

constant in the product form cquation is ¢ =1, If all classes form closed loops with no arrivals or
departures then the coffective arrival rates are given up to an multiplicative coastant by

A (ky- ZA"”(I)r/,,. In this casc the network is said t be closed and the normalizing constant
1

is such that the sum of all probabilitics is 1. Otherwise the network is said o be mixed. In this case
)\"ff(k) i3 uniguely determined tor those classes that form no foops and determined up to a con-

stant for those classes that form closed loops.

We conclude this section on product form solutions by noting that the same results have

t Departures from the networ’ can be handied by defining a certain cluss for departed customens However. it

is traditional 10 aveid defining a c\plicit class for departures. resalting in 2“,(1 if cless K customen can

k
lcave the network.
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been reached by others. notably Baskett et al [B1), by close examination of the global balance
cquations in the method of stages. For certain cases these global balance equations reduce to local
balance cquations for which it is casy to determine the cquilibrium probability distribution, Kelly's
treatment via the quasi-reversibility of the queucs gencralizes carlicr work (distributions with non-
rational Laplace transforms and any qucuc htting the description given carlicr for gencralized
M/M/- queues or symmetric qucucs can be treated) and unifics 1t through the concept of quasi-

reversibility.

2.6.2 G/M/1//N Model as a Queucing Network
The G/M/1/7/N mode) can be considered as a closed queucing network with a FCIS gucue
with an exponential service time distribution - same mean for all customers - and an infinite scrver

as depicted below:

[ ]
. .
[ )
Muiubus
ICIS Queue Lxponential service
Processors

General service

Figure 2.9: Qucucing nctwork for G/M/1//N model

Al customers arc identical. et all customers in the infinite scrver qucue be class 1 with
mcan service time 1, et all customers in the FCI'S queuc be class 2 with mean service time /.
Thus ryy- ry -1 and ATy AN (2). Fach queue is quasi-reversible in isolation. ‘Uherefore

from section 2.6.1 we have for the infinite server qucuc with a state of x| =(n):

m
Pl -
”y ::xlrn—l'f- . p|:.-}\’ff(l)lp.

For the FCE'S queue we have for a state of xy--(i)):

T, k. ey A,

Thus tor the oserall st40 X (o) - {n ) we have
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A i, | 2
Ty =K|K) - I?\'ff(Z) I
ny!

Since ny+ny=N, the statc reduces to X =(n3) and the steady-state probability distribution

of ny customers in the FCFS queue is:

Y= MM[ l . 0<m<N .

xlle)\effl-pllv
N

Aside from the change in notation, this cquation is cxactly the same as cquition 2.1 in sec-

and x is a normalizing constant ( x =

tion 2.4 for the steady-state probability of #4 customers in the M/M/1//N system. Therefore both
the M/M/1//N and G/M/1//N modecls have exactly the same mcan waiting times per request if
the ncan processing and access limes arc the same respectively for cach model. (The reader is
thus referred to the graph fpr thc M/M/1//N case in licu of a graph herc.) ‘This is a surprising

result considering that the processing time distribution is arbitrary. As we shall scc in the next sec-

tion, the key to this behavior is the exponential distribution of the scrvice time at the FCES quceue.

e oob
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2.7 General Processing and Access Time Distributions - G/G/1//N

In this scction we consider the full gencrality of the basic model studied so far. Unfor-
wnately. the G/G/1//N model is difficult to solve exactly. We no longer have the convenience of
memoryless (i.c. exponential) processing times as in the M/G/1//N case or the luck to have a pro-
duct form solution due to the exponential service time as in the G/M/1//N casc. Imbedded Mar-
kov chains and suppleimentary variable methods are hopelessly complex. This lcaves the method
of stages, as complicated as it may be. Of course, as mentioned in scction 2.5, explicit closed form
solutions cannot generally be obtained with the method of stages.  Simulation is also a possible
alternative.  However, simulation is not very uscful to systematically determine the effect of vari-
ous paramcter changes, so we leave it as a last resort.  Approximation, which doces not suffer from
this weakness, is perhaps the most attractive alternative in this case. Rather than pursuc a lengthy
mvestigation ot approximation techniques for the G/G/1//N system, we refer the reader (o
Halachmi and Franta [H1] and Whitt [W2).

One simple way to approximate the solution of the G/G/1//N modcl is to replace the FCI'S
queuc by cither a server-sharing queue or a [.CES queue. Both of these queues are symmetric
and the processors can he represented by an infinite server queuc as in section 2.6.2. Therefore
buth queucs arc quasi-reversible and a product form solution exists.  In fact the analysis and solu-
tion is czactly the samne as that in section 2.6.2! Thus this approximation gives no more inforna-
tion than that in scction 2.4. (Actually it docs: it demuonstrates that under different service discip-

lines the G/G/1//N inodcel has very simple solutions.)

2.7.1 Mean Waiting Time in PH/ZPH/1//N Model

In this section we derive, using the method of stages, a solution for the mean waiting time
per request in the G/G/1//N maodel. Our approach is to rclate the solution of the G/G/1//N
maodel to the solution of the G/G/1//(N-1) model (i.c. the same modcl - same processing and
access time distributions - just onc less processor) and then find the solution by solving a smaller
problem based on the solution of the G/G/1//(N-1) model. ‘This recursive approach  was
mativated by the proof of ‘Theorem 2.2 in Appendix B. Herzog, Woo, and Chandy [H2] have out-
tined in general terms the solution of queucing preblems by a recursive technique so the concept
we apply is not new. However, we have not found any references in the literature concerning
recursive techniques specifically applicd o the G/G/1//N system.  General motivation for mtuich
of the content in this section. such as the block partitioning of the gencrator matrix and the I

distribution, is duc to the work of Neuts [N1].

Neuts has studicd continuous tinic Markov processes with a countably infinite number of

states where the gencrator mairix ¥ has the following (canonical) block matrix form:

¥ The nondiagonal clements of a penerator matne (O ie for 7% . ndicate the teasition taie from state f
g t 1y .
to sate o the wwoented  continuors e Makov process Fhe duigonal s clements are piven by
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Bg A9 0 0 ..
By, A Ag 0 ..
Q =18y A7 Ay Ag . .

. . . . « .

where all matrices are mXm. Neuts [N1] has shown the following result concering such

Processes: o
If the matrix Q is irrcducible and positive recurrent (cxplained below), then the sta- f_:
tionary probability vector @ of (0 when partitioned to agree with the partitioning of @ :.: ’
has the matrix-geometric form: _'_.::'

mi=mR' i>0 2%

L

.

© o

. . .. PE . k L

where the matrix R is the minimal nonncgative  solution of 2 R* A =0. e

k=0 v

.t

The matrix Q is irreducible if the system has no independent subsystems; that is, if all sub- =i
systems interact and arc dependent. This cnsures that the steady state solution (if it cxists) is :—'\':-
KA

indcpendent of the initial state. It is usually cvident by inspection or construction that Q is irredu- :::_-:
cible. Requiring that Q be pusitive recurrent is essentially just requiring that the process is stable _':x:

(i.c. the gueue size does not grow indefinitely) so that a steady state exists. We will not be con- ..
cerned about positive recurrence here since our closed system G/G/1/7/N mode! will have only a _:‘
finitc number of states and we will assume it to be irreducible; thus the corresponding matrix Q ROA
A
will neces.arily be positive recurrent. $2

[y

We will hypothesize that the steady state probability vector of the G/G/1//N model (whea N

-. f.'

represented by the method of stages) has a similar matrix-gecometric form. Qur G/G/1//N modcl s
e,

will have only a finitc number of states: thus our approach will be similar to but dilferent than Y
AN

that outlined above for infinite dimensional systems. ‘The key aspect of Neuts' resuit is the matrix-

~

geomcttic form of the steady state probability vector,

In the following, we will use the phasc distribution (denoted by PH) originated by Neuts

[N1]. ‘The PH distribution is really just a convenient matrix formulation of the method of stages.

(Indced, some authors use "phase” instcad of "stage”.) This formulation provides a much needed

Qi = — 2(/,-], A generator matrix Q has the property that 7 () =0 in the seady sate where 97 is the vector
j#i

of stcady statc probabilitics.

00
® Minimal in the scase that R <X (clement-wisc) for any other solution X #R of 2 vk A =
k=0

TP VORI
AN -._F\‘_\.”

8y
4
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structure for the method of stages and unifics many widely disparate formulations of Frlangian,
serics/parallel, and stape ype distributions. PH distributions are, however, a subset of those
obtained by Cox [C4} in that all the poles of the Laplace transform of a PH distribution are real
(as opposed to the complex poles allowed in Cox’s formulation), "This restriction to real poles
allows PH distributions to be dircctly related to finite state Markov processes and ailows them to

be realizable using only real arithmetic,

A continuous parameter PH distribution /'(x') on [0,00) has the following formulation:

N T 70
Q=10

where 7 is a me‘nunsingulur (i.c. invertible) matrix, ZO is a mXI column vector, and
Te + Z'n = 0 where ¢ is an m X1 column vector of 1°s, ‘T'he matrix Q represents the generator of
a m + 1 statc Markov process, ‘The transition belween any state 7 € 1,2, -+« . and state j €
L2, - m. j#i,is governed by an exponential distribution with rate 7,5, Similarly, the transi-
tion between any state @ € 1,2, -+« and state m + 1 is governed by an exponential distribu-

tion with rate T,-0 (T; = —(7‘,0 + ETU))- The states 1,2, --- ., m arc transicnt and state nt -+ 1 is
J*i

absorbing. The initial probability vector is (a.ay, ;1) where a is a 1Xm row vector wnd a; is the
probability of starting in phase i. ( ae Fagy =10 ine random variable x is defined as the time
until abserption in the above Markov process. ‘The distribution of x is F(x)=1-- g(’”"' e. x>0
‘The pair (a.7) is called the representation of /(x) and the dimension of the square mateix T is
called the order of F(x).

As an example, a third order Evlangian distribution (/73) can be formulated as o Pl distribu-
tion as follows:

Erlangian:

Stage | Stage 2 Stage 3

Each stage has an cxponential distribution with rate p
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PH distribution:
~pop 0 0
s - . —_— 5% = 1o a = [1 0 ol
0

We now consider the G/G/1//N model where the processing time distribution is PH with
representation (a.7), order m, and apy ;=0 and the access time distribution is 11 with represen-

tation (B.5). order v, and B,,=0. The states in the resulting PH/PH/1//N modcl can be
described by:

(nsdy.....ty)

where n is the number of requests queued for or in service, 0<n <N s is the current phase of
the service (i.c. access time disteitationy, 1<s <v; #; is the current phase of the processing at pro-
cessor i, 1<, <m: and s and ¢ are simply omitted (or taken to be zero) when there is no request
in service or when processor / is idle, respectively.
N
This gives a total of m" E v’ states. Since all the processors are assumed to be identical,

Jj-=0
we can reduce the number of states by considering the state description:

(nspypr.- . Pm)
where p; denotes the nuinber of processors in which the processing is in phase 7, 1<i<m,

/i
0<p; <N —n, ip, =N--n, and a and s wc as betore. This gives a towl of
=1
N -1 .
Nem=1] "3 [N-j+m--1 )
I o /j%)v S| v states,

As an cxample, consider the /73/175/1//N system with N -2 3. "I'he state transition diagram
for the system is given in Figure 2.10. ‘The corresponding gencrator matrix, if the states are labeled
in  lexicographical  order (.. in owder  {0.0,0.3)40.,0.1,2).40.0.2.1H).(0.0.3.0).(1.1.0.2).
(LLLD(L1.2.001.2.02).(1.2,1.1).(1.2.2.0)2.1.0.1), (2.1,1.0)(2.2.0.D).2.2.1.0.03.1.00).(3.200) ). is
given in Figure 2,11, Notice the block tridiagonal form of (0. A process having a matrix @ of this
form is called a quasi-birth death (QBD) process. Figure 2.12 shows the generator matrix for the

general case of a PH/PHIZT//N system with the processing time distribution of order 2, the aceess

ume distribution of order 2, and N . 3. Again, note the block tridiagonal forn of Q.
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If we label the states in the same lexicographicil order in the gencral case, then we obtiin

the gencrator:

Bo Cog 0 O
Ay By ¢y 0
0 Ay By C5 .
Q=10 0 4; By.

[— I~ )

0
0
0
0

.. .. . By_y Cyoy
0 0 0 0 . Ay By

where:

IN l+m

. . . . i
B; is a squarc matrix of dimension v denoting the transition rates between

states with i requests in the queuc;

. —fFm - . i . . .
A is a v‘N ! __'" l‘Xv(z)IN ,’_’] '"' matrix denoting the transition rates (rom: states
with 7 requests in the queuc to states with i —1 requests in the queue (v(i)~1if i -1 and v

otherwisc);

'N- itm -

1 N-itm-2 . . o .
w1 v _ mattix denoting the vansition rates from

and, (; isav
states with 7 requests in the queue ta stites with § 4 1 requests i the queue.
Morc details about these matrices will be given later as necessary, We partition the steady

probability vector # (given by w @ -0 aad E"’i =1) into the vectors mg, 7). ... mp thaich-
i

myBo+mA1=0 (2.6)
w,1Ci_1+uiBi+mi A4, ,1=0. 0<i<N (2.7)
(2.8)

N-t1Cn_1+anBy =0

Onc way (0 solve these equations is w0 adapt Neuts” matrix-geometne approach. Since the

maltrices are now functions of ¢, consider o rate matnix that is a function of 1 e K () and pucss

that w, has the form o, @R(DR2) - K DRE) Substiiuting this expression tor o into

the steady state cquations we obtain:

v e -

statc
ing the partitioning of (. 'Ihe steady state equations are now:
v, i wibi+® i +1=Y. J
N * .4 S
!
i
'.

N O 1 #RINMIY) O
®, (C, J+RWIB, + RDRG VL)) O <<V

wol Byt R(VA O

-’f o‘ . *, AR e
- . ~ . J‘ .’ , PO . ) ) L . .
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82 Multibus Models “
Y,
’
{f the appropriate inverses exist we have: .‘:
R(N)=~Cy_ By~ 3
i
. . . - . '
RG)=—Ci(B; +RG+1)4; )" . 0<i<N .
L}
1 ¢ '
R(1)=--BoA, o
A solution technique by iterative substitution is now apparent. 'This particutar matrix-product &
approach is again - to the best of our knowledge - new. However, it is a rather infeasible .
. . . . . . . o N ‘>l
approach. The main difficulty is posed by finding the inverses of the various matrices. For large N Y
and cven just small values of s and v, the dimension of B; for small 7 is very large, implying that #
large dimensional matrices must be inverted. Finding the inverses of large matrices is computation- !
W
ally very ineflicient. Furthermore, the inverse of a sparse matrix is usually quite dense. ‘Therefore R
it is difficult to use any sparsity present in the A,, #;, and (; matrices to reduce the computational : v
. . . . . . . . . S
requirements in any of the other matrix operations. "The non-sparsity also implies large storage .
requirements.  Anaother difficulty is posed by the varying dimensions of all the matrices involved: "
. . . . . . . . . - L]
even R(r) has a size that is a function of i. This makes any practical implementation difficult and ;.;
complex since the solution of cach R (¢} is essentially a spevial cace. -inally, a great deal of work is : a-z
r
required for the solution with WV processors (N ¢ 1 matrix inverses and many matriv multipiies and .
adds) and ¢ must all be repeated if we also want the solution ior N+ 1 processors. R
~
a , , . A . 9
The key idea in this section s tie following sumple obscervaton, )
- )
X »
Satre oi the steady stite probabihitics of the G/GZ1//N system aie related by a multiplica- E
toe constant 1o the steady state probabdities of the saime system with anc less processor (¢ ‘
: , _ o
GrGZEZ7(N 1)y Speutically, for our PHEZPHZEZZN system with state (8. p1p ) . ... ) and N
o
steady state probabilities tor N oprocessors denoted by (N X s py. ..., py) we have: RN
~
l\:
wNNn s pa) CatN e bsgp . ). 2<n KN o
' —
: whore s o comsiant Phe proot of this rchation for the geneeal case Gre tor the GrG/TZIN sy
Y
) e pivon doog the proot ot dheorerm Y0 Appendie B :;'::
R . . . R . v \ \ cet
Phorctore b we denote aar canhior pattiioned sicads <Lie sedtorn s o (mo . cwa) tor -_-:
U P PVEZTZ7% aostem aond w 1m,~ «n\" ) ton the adentical systom with ane dess )
PHR S Wy have :f::
e
) AN
AR A (N :"
N
-
» I
o
W. v ot g 1\ ‘4\”1\ oy t u\.fn\ A P PN } o by o v '
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wdBo+ul'a,-0 (2.10(a))
ol Coraly= —aP¥ay--Cafl 14, (.11(h))

Assuming that @ is irreducible (which we will assume in the rest of this scetion). equations 2.10(a)
N +m --l' lN +m-

v
~1 m—1

and 2.1(b) represent l m '2, lincarly independent cquations in the same
number of unknowns. If Q is irreducible, all the rows of Q are lincarly independent, and thus

I!o" exists, yiclding
af' = -al A B! and alMB1-\Bg7'Co=-Cal 4,

Finally (B~ A1 Bg 'Co)™" also exists if Q is irreducible, yiclding

N

all=-Cal TAKB - A B )

l.ct -n,~N denote the steady state probability of i requests in the queuce. ‘That is, o ,-N rv_r,-N-g where e
denotes a column veetor of 1's of appropriate dimension. ‘Then the constant C can be determined
by the requirement that i" iN =1. Therefore we now have a recursive formulation for determin-
i=0
ing 7;,-”. 0<i<N, for any N2> 1. 'The solution for & =1 can be found by solving g:_r()' Bo+ -_r“'A 1=0
and wgCy fg;_.’lflzﬂ where Bgis mXm, ApismXv, Cqyis vXom, and B is vXv. (Note that the
dimensions  of Ny Il Q
:’!1‘ = - gm'(lll - IIIO"('O)“I where the inverses exist. In addition we have v_r,l-g /-y_,}-g =1,

the matrices are  functions of is irreducible  we  have

yiclding gu'(l (B -4 ,Ilo"'('o) "l)-g =1, “This equation is casy to solve for reasonable values of
m and v,

The mean waiting time for any N can be determined by applying Little’s Law twice, as in

section 2.3, to yicld

N-=1

« 2(:‘ fl)w,’v“ + 11|N
[N

. o - l

' (2.11)
('Ew,N 'lw{v
1l

Since the normahzation factor for the ‘n,v cancels out of equation 2110t s not necessary to deter-

. ’W
muac the constant € equation 2.9t the w,‘v are Just being used o compute
’ﬂ

To wvend the computational inctficiencres assoctated with the matio o mersions and o retan
the advantages attorded by sparse matrees. it s best o solve cquations 210and 211 wsig Guaus-
Phe By matne s veny sparse. Inthe tollowing - the state

sin climmatten or Crauss Sicde! teration

cotresponding to row s donoted by (' g 1 Y and the state corresponding to coluinn g
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is denoted by (n/ 5/ .pf v oo pib). Element (i.j) of By is given by:

p/"l‘,k if n!=n’/=0,s'=s/ and ! and k arc the unique valucs (if any) such that
i)izj: (Bo)j= pi=pj. for every g# 1.k, and pf=pf- 120, pl =p| +1EN

0 otherwise

i) i=j: (Boyy=— 2(Bokyj— A(Coly

i*j i®j
‘I'he C¢ matrix is in gencral not as sparsc. Element (i,j) of Cg is given by:

pﬂ'loﬂk if ni=0,ni=1,si=0,si=k,and lis the unique value (if any) such that
(Colj= P4 =pj. for every g #1 and pi=pi—1>0

0 otherwise

‘I'he B matrix is again very sparsc. Element (i,j) of B is given by:

piTy if n' =nd=1,s"=s/ and I and k arc thc unique values (if any) such that
pi = p. for every q#1,k, and pf=p[—120, p{ =pf +1<N —1
ANE T . , ) . . .
D i%j: By Sy it n'=nl=1s"'=t. s/ =u, l)‘}=‘p.{
0 otherwise

i) i =j: (B =~ 2B~ A1)~ 2UC Dy

i*j i*f i*j
where
pﬂ‘,o if n'=1,nd=2s" =5, and lis the unique value (if any) such that

(Cyij= pi=pj. for every q#1 and pf=pj~ 120

0 otherwise

The A matrix is given by:

§|0g ifn i=1.n)=0s"=1s) =0, and lis the unique valuc (if any) such that
(A= p,jfp,{. for every q #k and p{=p{+l$N

0 otherwise

‘The sparsity of all these matrices denends on the exact form of the phase distributions for
the processing and access tines. In the special case of Erlangian scrvice, the matrix 4 is very

sparsc. The matrices sull have arge dimens,ons for large V. but now we can efliciently cmploy the

sparsity of the matrices to rednce bath the computetional and storage requirements.
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‘There arc three drawbacks (o the recursive approach described to determine the mean wait-
ing time. First, as just mentioned. the matrices are still large for large N. Furthermore, the size of
the natrices is sull a function of N, Sccond, one cannot obtain the solution for V processors
without investing the work to determine the solution for 1, 2, 3, ..., and N - | processors. Some-
times this is a convenicnt built-in advantage. For instance, in this thesis we have continually been
interested in the solution for 1, 2, 3, ..., N processors so a recursive solution based on the solu-
tion for N —1 processors is not a hindraace. In fact, the recursive solution is very cfficient in a
casc like this since no extra work is performed. ‘Third, as with all recursive computational pro-

cedures, small numerical crrors propagate very well throughout the chain of calculations.

As a final remark, the recursive method really ainounts to solving cquations 2.6, 2.7, and 2.8.

h)
&

It just happens that the intermediate results solve the same problem for smaller N,
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2.8 Multibus Model with 1 ong Word Accesses

Wc now extend the model of the isclated Multibus considered so far to include long word
aceesses. as discussed when the processor model was introduced. Long word accesses are modeled
as follows: at the end of the processing time interval, the processor decides with a probability 8
that its memory access will be a long word access and with a probability 1- A8 that its memory
access will be cither a word or byte access.  The probability 8 is assumed identical for all proces-
sors and independent of the state of all other processors and memory access. A long word aceess
actually requires two successive word accesses on the Multibus, With the Multibus  system
cimployed in Concert, there is an interval of 600 to 700 nanoscconds between these two accesses
during which the processor releases control of the bus to any pending requests. Because of the
round-robin arburation on the Multibus, all the pending requests are served before the second
access of the long word aceess. Therefore a long word access is essentially two independent
acvesses: 600 o 700 nsee afier the first word access is completed. the request for the second word

is generaied ang joins the end of the queue for Multibus service,
1)

AL

L ] : T

e 1 /

) Muitibas
171 S Quelic

Processors

lMigure 2.13: Iasic Muldtibus modcl

-

Recovery

P " . Multibus
rocessing ['CES Queuc

Pigure 2.14¢a): Extended Multibus model
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=

(DD

Second word
of long word

Byte. word, or Recovery
first word of

long word access

Complcted
access
access

Figure 2.14(b): Class transition diagram of cxtended Multibus model

‘The basic Multibus model, depicted in Figure 2.13 above, can bhe extended (o include long
word accesses. This extended Multibus maodel is depicted in Figure 2.14¢a). Note that the circle
labeled “processing”™ denotes ol the processors which are processing and the circle labeled
“recovery” denotes all the processors which are recovering: these circles do not denote individual
processors. Figure 2.14(b) shows a class transition diagram of the modcel. ‘The details of the niodel

are as follows,

Let the request for a byte, word, or the first word of a tang word access fron any processor
i (1<i < N) be represented by a vustomer ol class 1 Upon completion of this aceess, the class |
customer becomes cither a class 2 custoimer with probability 1 8 or a class 3 customer wilhy pro-
hability 8. Class 2 customers represent fully comipleted memary accesses - byte, word, and long
word (both word accesses) - and class 3 customers represent half completed long word accesses -
only the first word access completed.  Upon reeciving a class 2 customer, processor ¢ begins pro-
cessing and after a time period 1,. governed by the processing time distribution, processor i gen-
erates another request, represented as a class 1 customer,  Upon receiving a class 3 customer, pro-
CoMOr { wails a recovery time 7, (i random vaciable given by a recovery time distribution) betore
generating a class 4 customer. representing the request for the sccond word of a long word aceess.
Lipon completion of this sccond word access (all word accesses are governed by the same aceess
time distribution), the class 4 customer becomes a class 2 customer and returns to processor .

fixactly M customers arce always somewhere in the closed loop of classes 1,23, and 4.
Conceptually there is no difference between:

Mcthod 1 the processor deciding when it generates a request that the request corresponds

to a long word access, and

Mcthod 2 the server deciding when it complctes a word access that the access corresponds

to a long word access (and hence requires i second word access). (This mcthod s depicted
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ﬂu
[ .
in Figurc 2.14.) . '
»'3
In method 2 there is no need to distinguish between byte or word accesses and the first word “r
-
of a long word access. Mcthod 2 therefore requires one less class per processor than method 1. ;‘_';-.
~ A
Y
The processing time random variabic, 7,, at cach processor is assumed to be identically distri- -:_ )
. “~
butca for all processors and independent of all other random variables, ‘Fhe recovery time ran- "
dom variable, ., at cach processor is also assumed to be identically distributed for all processors =
. . .. . . > &
and independent of all other random variables.  Finally, the access time random variable, ¢,, for \f-_
cich byte or word access is assumed to be identically distributed for all such accesses, irrespective 0
n
of class, and independent of all other random variables, -4
:_ —
l"
2.8.1 Analysis of Model with Leng Werd Accesses o
s,
: Ny
2.8.1.1 Asymptotic Behaviour I
. . . . I 1 o
FFor sufficiently large N the bus will constantly be in use, yiclding a bus throughput of -— =3
la N
word accesses per unit time. Since cach processor cycle (processing time plus word or long word N
. N
memory aceess) requires an average of 1/ word accesses, we obtain the throughput balance :’a
cquation: . .. -
(LN 1 N
+ [N
- /" — = (2.12) .":-.
{, { A
(514 a \"\
b}
where £, is (the average cycle time given by: ~
-~
- - - - = - A
leye lp # ’w| tig # BU, + ’wl +1a), (2.13) N
’ -~
1, is the average waiting time for a byte or word access or the first word access of a long ':~'_‘$
word NS
- \'_\:
and 1, is the average waiting time for the second word access of a long word. e
e
\n
- - . \J
In gencral ly,® 1y, since the waiting time of the second word of a long word aceess is corre- \::-
[ S
lated with the waiting time of the first word. For any particular fong word access we have e
..- !
n, # ”(, 1) el
L4 a r » " "
—~ <’
ty, = max(0, 2‘1 la, 1,) where -
i KNz
NG
n, is the number of requests joining the queuc aiter a request (for the first word of a long .
"
. - . i ',!.‘.\
word) during the waiting time 7. of that request AN
t » \- N
."'l
TR is the number of requests joining the queue during the actual access time and :, $\
q
-.A. ...
l‘ L d a
/s

’

.
'.\‘\n "'-“
.‘,

m;&ﬂﬂq.ﬁﬁﬂ:;“ﬂm Mi‘m-:' "‘}dtﬁ n"“t"'ﬂ \- ”ﬁ%&h& (::;E: ey f_\’ _s;.‘_-. -.j
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recovery time (7, #¢,) of the request (for the first word)

and 1, denotes a particular sample of the access time distribution.
e, F NG, 41, is the total number of requests which arrive after the request for the first word
1
but before the request for the second word of a long word access. ‘The quantity ny, is related to
1

ly, and thus 1, and ¢, arc corrclated. In particular, lw2=0 only if all requests that arrived in
ly, g + 1, arc completcly scrved in time 1,. Certainly, ’w,-‘-o is in general more difficult to attain
the farger 4, is - ic. 1,,=0is in general a stricter requirement than rwl:rO. Thus we expect 4,
and Iy, WO have ditferent probability distributions.

‘The mean total waiting time (or wasted time) per processor cycle is ;Wr:’—W: + BTWZ. Manipu-

lating the cquations 2.12 and 2.13 we have:
=(L+BINiy — 1, —(1+ )1, - Bi,
If we normalize 7*1' by the mecan word access time #,, we have

T .
L= (L4 BN~ a—(1+B) By (2.14)

la

{ l
where a ==, as before, and y = --—. Equation 2.14 describes a function of N with an asymptotic
ld ’(l

at e
slope of 1+ and a knee at l+—;%1. e cffect of the long word accesses, through the

paramcter B, is to increase the asymptotic slope compared with the case with only word accesses.

‘I'he knee increases with B if y> a and decrcases with 8 if y<a.

Normalizing instcad by the mcan memory access time 1, =1, + B(1, 1 1, ) yiclds:

R, N a
- = G eee—— — | (2.15)
Im ﬁ‘r (1+8)+By
l +8
ar . 1
As a function of N, — has an asymptotic slope of ——, which is always less than or equal
Im 1+ -——
1+8
to 1, and a knee again at 1 +l31_
1+8
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2.8.1.2 Deterministic Behaviour "
Consider now the casc when 4, 4, and /, are ceterministic quantities. The maximum -
memory access tine is 27, #1,. Regarding this as the access time and praceeding as in section 2.2
\ , ,
Y we obtain 1, =0 for N<| - 2| 1. In the actual Multibus 0<1, <1, (scc Appendix A). Tak- 8
+ i W

a r AR

. ) ) - 4

! ing 0<r, <1, here, we find that qucucing must occur (i.c. IWT>0) for N> CYRN +1 when o
a r -~

'

B>0. The reason that 7w1,>0 under these conditions is that no rcquest can be completely served )
-5
in the recovery time (since 1, <4,), thus in order to maintain l, =0 only one request can be _'}.
) . . . Lo . ’p "
. served in the entire 21, 4 4, interval. Towever, this is impossible for N> Y + 1, henee -
a r RS
. PR, . . . . \:'r
some requests must occasionally wait. ‘The case with 8 = 0 reduces to that discussed in section 2.2, S
Ip Y
for which no qucucing occurs until N>} -=-1 + 1.
la W
'-:(
In the actual Multibus 0<7, <1, (sec Appendix A), thus 0<r, <r,. We can view the *_,'
recovery time 4, as a shortened processing time. Thus the processing time is £, with probability Y
»
1--8 and ¢, with probability B (with the restriction that une processing time of 1, follows cvery e
processing time of £,). When N> | #1 ana B=0. we know fromn section 2.2 that the bus is o
a ‘-:.:
t e
always busy. The following thcorem shows that the bus is in fact always busy wicen V> v-’p-- +1 ';_‘
a .
regardless of the value of 8. :f:
N
PN
St
Theorem 2.5 RSAY
Consider the Multibus model with long word accesses described in the beginning of section S
28.If L
1) Ip and ¢, arc deterministic variables such that 0<7, </p. el
A
2) I, is a random variable with minimum valuc ’"m?—"‘ T
p o
J) N> +1, and O
e T
4) cach of the N processors has completed at least two memory accesses - byte, word, or -:
first or sccond word access of a long word I
Pl 4
. . . . ENAY
then the fraction of time that the bus is busy, denoted by p, is 1. Tl
RS
AT
NS4
Oy
0F LW )r.', L R D PO AL I S AT R RS R N L P B e e L IL I SO I I WY N T T ST SANITIPE SRS TR -“'-"
1,89, N N (s A - P A A O i AN A A AT AL AT A A A
0"" """.:‘l‘- L] .O 'I, L] l.: “: ‘.l s Ve Fn vy I'u l't "- 8, ‘ .\"\ .. I‘l P 2 Bl L .| [ ) (] . l\- - ' X '( a *5} N {\ - - .l'



.o 00y

|‘ AN

MultiBus Models

Proof:

Supposce to the contrary that p<l. 'Then there must be at feast une memory reguest
such that the buy is idie immediately prior to that request. Choose one such memory
request. Denote the time at which that request occurs by 7 and the processor from

which it originated by k. There arc two cascs to consider.

Case 1: At time 7 processor & just completed a processing time interval (of duration
).

Immediately prior 10 time 7 - 4,. cach of the N -1 processors other (han processor k
cither must have a memory request pending (and waiting) or must be in the midst of a
processing or a recovery period (since all processors have completed at least two
memory accesses). Since 1, <, all of these processors (i any) in the midst of a pro-
cessing or recovery period must gencrate at least one memory request before time 1.
Theretore there must be at least N --1 memory requests pending or generated in the
interval (1 - 1p.7). In order that the bus be idle immediately prior to time 7, all of these
memory requests must be completely served before time 1. Since there are at least
N -1 of these memory requests. we must at least have (N l)/,,mm<l,,. Or, since V is

{
an integer, we must have ¥ < ; Lo VS §
o

min

Case 22 At titue v processor & just compleied a recovery titme intenval (of duration ¢,)
Since the bus is idle irmmediately prior to time 7 ond (St - there can be no memory
requests pending or generated in the interval [r - £..1). Furthermore, no ncmnory
requests can be peading or generated in the inteeval (-4, — ¢, 7). otherwise the bus
would not be idle immediately prior to time 7. In order that there be ho memory
requests in the interval (v - ¢, - "'mm"')‘ all the other N 1 processors must be process-
ing Jduring the interval (r - ¢, la o) Fhus cach of these N 1 processors must begin
processing in the interval {7 It iy ’"m..." implying that at least V2 memory

accesses oceur in the intenval [r -, ¢, 1, | Therefore at least &N T memory
min

accesses oceur in the interval [r - 4,.7), ie (N - l)l,,m“<ll.. Or since N iy an integer,
)

!
N< = %
Iamin
B ’/) . . .
From Case 1 and 2 we conclude that ¥V < = | # 1 is a necessary condition in order
’(I
mn
. : p
that p<1. Since by hypothesis ¥V>1- 7= | 4 1o we must have p 1
’amin
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Qur throughput halance cquation (cquation 2.12) can be written for gencral p as follows:

ALBN
Ioye {ta
. lw, . . | . .
We conclude from this that ——- equals its asymntotic value for N> o +1since p=1for N in
Im a

this range.

Figure 2.15 illustrates representative cases of I—,,_r/l—,,, vs. N in the deterministic case.
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Fagares 20500 and 2 TSh) depact " fo B 0and B 1 respedtinely. (Vs treated as a
Iin

X

Ip

continnons paraicter s baouee 2150 thus the floor functions are acglected. Note also that a =

Ry

la
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)

3

[
and y . Jor >0 we have three cases:
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I hese three cases are illustrated in Vigure 2.15(¢). Ny=|- - -]+l and N,= L.
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‘The curves in Figure 2.15(c) are rounded in the knee arca due to the randomness introduced by

4
o

the probabilistic choice of word vs. fong word access. Because of this rounding. the knce cannot "

always be interpreted as the maximum value of N for which Iy, -0 can be maintained.
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9% . MultiBus Models

tionary processing, rocovery, and access time probability distributions for all N if #- 0 or 1 and at

least for NSE—:"—_ #1and NDa 1 if0<BLI.
Y

L,

&l

2.8.1.3 Product Form Solution

‘The Multibus model with long word accesses that was presented carlier has a product form

solution if the access time is exponentially distributed. The processing and recovery time distribu-

I
tions may be compictely arbitrary. NS
b
“~
Lct the global statc be X = (xp.y) where xp represents the state of the processors (where \_f

class 1 customers originatc) and y represents the state of the FCES queue for Multibus service.
‘The processors can be considered as comprising an infinite scrver since there is always a frec pro-
cessar avatlable for an arriving customer. Therefore the processors form a quasi-reversible queuc
(with respect to a Markovian state description). ‘'he exponentially distributed access time,
independent of class, renders the FCI'S queue quasi-reversible (again with respect to a Markovian

state description). ‘The quasi-reversibility of all the queucs in isolation yiclds the product fonn:

WX Ty, Wy

Let xp = (np.ng) where np is the number of customers in class 2 (i.c. processing) and ng is the

number of customers in class 3 (i.c. recovering).
fety —(nygny,)) where n 4, is the number of customers ia class 1 (i.c. byte or word or first access
of long word) and » 4, is the number of customers in class 4 (i.c. second access of fong word).

let A fff represent the effective anival rate of class j customers; j - 1....4. Then from the results

in scction 2.6.1 we have:

B ()‘{f/','p )y (Mff;’)"n
T apt ng!

1
(”"'1 + !u)), J”'ﬁ +n

s —— 1,

) n
4 |M./j| “
ngtng!

n
Al“'fjl "2

Now AT = a7 BA,U and )\‘”"(l -BA| ‘ff+)\ o - 2N 7 Ius the stcady state proba-

bility of the global state X - (np.ng Hgtiy,) s

N n
] " @, ona s
L I 2.16
X n,.'nk'nA 'IIA ! (216

Since np ¢t g + na, tng, - N.owe can rewrite this as:

flf-’/-". If.f,ff-‘."_-.r.'.rr'-'r M, n " n " LRSS S R T
,’-." " ,\'\.’\ .v_,’\..‘.',.',.f&f . (: N \. - '. J&R'. -;\ ::,,'.' ot ._.:-I:-'.\'_'.__ v
y Y Y NN .r‘\) AT AN VS SR
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o N Ap Ny ) 1 ""2
'x_(’|n,. YRR a " (By) " (na +ng )8
)
for some normalizing constant ¢’ (C' =—r )

The mean number of requests for a byte, word, or the first word of a long word access in the

FCES qucuc is

”"1 ﬁn,ﬁﬁ ﬁ ﬁwx np+nk+n,42——N—n,4|

n‘ =0 n,=0 ny =0 n‘

Similarly, the mean number of requests for the second word of a long word in the FCI'S qucue is:

H,qz ﬁ n,‘z ﬁ ﬁ ﬁ nx np +ng +n,4|=N—nA2

np=0 ny =0 n‘ =0

Clearly 17,4_‘-? ny, when B=1and ny,=0 when g =0.

If we let the global sute be X'=(n, 1 4,) then

, F AN —ng g N (4, #1140 "0
vxf--c"’ S S I gy A gM__

l"’=° ng =0 nplag! ny 'HA' (N na,—ny, )
, N-n‘I--nAl NI '(”Al*f'"A:)! "“1
=C'la+BY)
(N—ng ~nq N ngtng!
1 2 174,
n n
N L™ 8 |™
Y ong ng N—nygy —n (na, #+n4)!
4, "4y 47N |{arBy a+By
‘Thus
Iy‘ ny 1 "AIN.-n‘l (ny f-",{’)! "Az
PR T S [ B M B
1 ".4,=°”Al! a+By na =0 nAl!(N '_”'41—”‘:)! a+ By
n N _”A 1 n
N ny 4 ) (ng +nq4 M 7
ny.=C"N1 L NV S T 2
2 42"0”‘2! a+fy ny =0 ”41"(/\’_”4;—"'42)" a-tfy
Interchanging the order of summation for ;"'-1 we have
. T4, N -, ny (n,. +n,4 N 1 "4
g =C"N) B _ Sy DT L
! " alﬂy Ry R NN na, n4)' nlﬂy
VAN O
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N-a, .,
2 ("A, / ”Az)!

=C"NY NE_:I _8.

ln‘l
ng =0 a+ By
2

I el
a+By

m =1 (ng,— l)!nA:!(N —nyg - ng )

and \ ':ug

N-n
] 4, (n ANy 2)! . ", et

2 |

a+By

"‘1:0 nAl!(n,‘)—- l)'(N "”A,"’Az)!

n4|+l 2

1
a+ By

lru,—' N (g, + 1)+ (ng,~ N

nrz0 14,04, ~DUN (g, + 1)—(ng,- DN

By renaming ng and ng, in the above expression for ng we sce that ng =Bny . as onc might

have cxpected (naively) from the outset.

If we let _,\_’mz(n,,,nk .g) where g is the total number of requests in the FCI'S queue, then:
n (N —n)

r x ‘
o N
w= 1_,(!!12__ 1+ ":z(-lV 1+ g . ”’[8 Ny L
X np!  np! (+8) (1+P) nplng! * v (N —ne)! POy

Finally, if we let X ¥ =(ny). then

Vi N__ N
Ty =Clat BT omm

a+fy 3.\: "

vi__ N
(V—-n )

o+ By

where IO\

-1 1‘;?‘\’
1+8 " I\r\'
a+ By

N!
(-VI:
”‘ZO(N—M,)!

Notc that this jis exacily the same result we obtain in scction 2.4 for the M/M/1/7/N model if we ]

A 1+ . . . .

replace — by 1+8 = ratio of mcan service requirement per cycle to mean processor time (pro- !
. 7 - ¥

cessing plus recovery) per cycle. \"; 2

The average number of requests in the queuc is .QB-‘ ]

g =C v ﬁ ng

n, =0

n, 0 ,n'

N1

1+8
(N -n)! T N

a+fy

and i1y =y, Hz,,z:(l fﬂ)ru,. N
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POV LN
‘5.:‘..?‘.\:“.‘..

A

50 NN . N _‘4:.!#‘;.»_'.-_‘::\:~"

»

RORs




o
o
MultiBus Modcls 97
i
"' :l
— —_ !
o ~ ng,_ Ny, R ,:::‘
By Liwle’s 1 aw: by, = X}jf gty = 1\4"” -1z, and the mean waiting time for any access is Wt
]
Ly = S fu- Since NPT =pANTT and 0y - Bry, we have T, sl =l - "
w M"”*‘Mﬂ a- - 'A A , i w, " hwy ~= A';[f a
ly Bt
- | H
where A = AT A7, (In general 1, = + )
Y +8)  (1+8)
It is possiblc w arrive at l—wI r-l_w2 (and hence '."‘—1 :Bffj;) via a simpler route. A closed net-
work of quasi-reversible queucs has the property that at the instant a customer arrives at a4 qucue
the probability distribution of all other customers is the same as the cquilibrium distribution
obtuincd if they were the only customers in the network (Kelly [K1]). An arriving custemer cssen- o
Ty
tially "sces” the network as it would behave in cquilibrium without itself. Therefore class 1 and X 'I
class 4 customers arriving at the I'CFS queue cach "sce™ the queuc as it would behave in equili- ".E
brium with N —1 customers - cach sce the same distribution of customers, Both classes of custo- :.
- [
menrs thus have the same waiting time distribution. Nt
. - . . . . vy
Denoting the probability that the I'CES queue server (i.c. the Multibus) is busy by p. we :._::, f
have, again by Litie’s Law, p-=AF7 7,. “The bus utilization p is given by p=1—-C*. ‘Thercfore :;:: Yy
e/
= - _< , '.‘E'_'
lwl—lwz—"w ”S l 'l ﬁ V! ) l‘/ﬂ l
—— - L e = ST e ——————— -~
la P o YN =n) | a+By ;:'j."
&
N
3
iy
This is the samie result as obtained with the M/M/1//N model when, as just noted above, we ——
. a+t . . . T
replace a:-‘;— in the M/M/1//N modcl by ——pl. Iherefore —— is asymptotic to e
la
a+fy N
N Y 8 —~1 for large N (at lcast in the case when all processors arc identical and all the N
queucs are quasi-reversible in isolation). Since in this case we know that 1, =1,, =1, . it is casy to )
LAY
. . . . . , A
confirm this asymptotic behaviour, Equating throughputs for large N we have: s?{'\ :
»
(1+ BN 1 éﬁg
Ip+ty, #la +BU £ 1y +15) ¢ . ;
LY ‘.‘
- DAL
’W at B . . . .\':.v‘\
and thus — =N - —];? - 1, for large N as deduced by comparison with the result for the RN
lg o>
W
AGN
M/M/1//N model.
Since 1,,, :7% =1, the mean total waiting time per processor cycle is simply i,‘r (1P, jj}:__::
- - N
Although I, is more meaningful than ¢, as an indication of throughput degradation, we choose ':j,::.
U
N
RANS
Tt
- '\'::
“~

A R T AT TN W W W e, W A
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to give the results in terms of ¢, for three reasons. First, as just mentioned the two are trivially

- {
ielated by a multiplicative constant.  Second, 7, or more specifically, ™ unifies the results of the
’a

current model with the results of the carlicr modcels and facilitates direct comparisons. ‘Third, the
asymptotic slope of 7,, is independent of all parameters cxcept N, unlike the case with 7, . Thus
graphical results for 7, can be presented without the possible clutter created by asymptotes inter-
secting. A

Actual measurements (scc Appendix A) indicate that 7, =1.04 psec for reads and 1.06 pscc
for writcs and that 1, =.65 pscc. ‘Taking 7, =1.05 pscc and 1, =.65 pscc yiclds y=.62. 'The
minimum possible value for 7, is .60 or .70 psec with almost equal probability: thus a>.62. Fig-
urc 2.16 shows 1,71, vs. N for various combinations of a2>.62 and 0<B <1 with y -.62. Note
that with 8 =0 the model reduces to the G/M/1/7/N model.

‘The mean waiting time per request is very sensitive to the value of . Indeed, since

- t
---------- -_I_._“,z_ <0 (since a>v). the knee of 2 varics from —a~t2°—6—l- 41t a +1, which

1+8 :(l+ﬁ) la

represents close to a 100% change in 7,, (with respect to 7, for 8 =:1) for large a.

2.8.1.4 Simulations

In this section we cxplore the case when the access time is not cxponentially distributed and
-thus the solution does not (in general) have the convenient product form as in the previous see-
tion. As demonstrated in section 2.7.2, exact results could be obtained by the method of stages.
However, this mcthod requires substantial work and does not yicld great insight.  Approximate
results could be obtained by a diffusion model as in Halachmi and Franta [HH] or by the methods
discusscd and referenced by Whitt [W2). While such approximate results can yicld a great deal of
insight, they arc more difficult to obtain in this casc - duc to the complexitics added by long word

accesses - than in scction 2.7 and they arc, of course, just approximate.

In order to obtain a gualitative understanding of the cffect of different processing time dis-
tributions on the mean waiting time per request, we simulated the system with different « and 8
parameters for different processing time distributions, The access time distribution was kept deter-
ministic throughout to approximate the actual Multibus access time distribution. The error in this
approximation is presumably quite small since the variance of the actual access time is small (see
section 3.3 in Appendix A). ‘The results from all the previous models lead us o conjecture that the
mean waiting time for a given processing time distribution and a given mean daceess Hme is iminin-
ized by a deterministic access time. Thus the mean waiting time with the actual access time distri-
bution will likely only be greater. The recovery time distribution was also kept deterministic

throughout.
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100 MultiBus Modcls

Three difTerent processing time distributions were considered:  third order Erlangian (i.c.

I3). exponertial, and third order hyperexponential (with parameters a=.6 ) -3 a3 -=.1 and

- a a ay . . o .
Ap A AL IA Ay I where g, - Ty -). The chief difference between these dis-
LYRR YRS
o,

tributions is in their cocfticient of variation defined as ( .‘,’ = -— “I'he coefticient of variation, C -
{
p

is a mcasurcment of the amount of variation or randoinness about the mcan normalized by the

mcan. Fhe following table gives ( ',’ for the three distributions considered.

= —

Processing time distribution Cocfficient of variation ¢ ',’
Erlangian (73) s 5773
N It g It 3 J’j .

b e e m —

Exponential

e ——————— ———— . e e 4

be e e

Hyperexponential (/3. parameters as above) Y 10.1=3.178

The simulation results for a - 1.0, 5.0, 10.0 and 8 -0,.5. 1.0 arc presented in Figures 2,17,
2.18 and 2.19. Notc that the yvertical axis is the mean waiting time per access for Gy wecess - i.c.
the first or second word of a fong word - denoted by 1, We found in general that }.‘137”,5:,,2
where ¢, and 1, arc the mean waiting times for the {irst and second word respectively. ‘The
difterence 7,02-'7“l increased with N and approached a constant as the mean waiting tiine
Ly * ly

approached its asymptotic valuc (interestingly, 7,,% —=--=). These findings arc consistent with
8iy, Iy 3 8

the discussion in scction 2.8.1.1: the waiting time for the second word of a long word access is

correlated with the waiting time of the first word of the same long word access.

A

A

Xy
-y "; ﬁ"ﬁi“.

LIRS

'

'5.5:..'.‘-

[ l"l~..
WY

Arel

o &

'y ’
PARAS

G %

»




D W o W X : ? ‘ <
Tty A = B NP NN BRI L AN NN , e \
S LI I A B e A A A S RN T AT T RS XA s )’
-V gl b i & RA ) -J..f.. \_r.. ESAnSSEY, i..v-.h.‘-‘. f-f.lﬂh_r.. I LA \.\“.Wn\. \..\..\....,..\......-\..fq h..%..u.””..M.Hu-.M.M . &H V\Vﬁ?\u\ﬁﬂ. ...”...”..s” o
)
= N s0ssoxud Jo Jaquuny
4] h o
< I A i -@ hﬂ __A @ hr tLP{ Mb z .
= - 00
- Q-\
0-¢
-07
0¥
Ol=r0{ 5°¢ \ D.\.Q (1sonba1 ot
Aue 10J)
isanbas | 0s
o . .n~ﬂm\ Jod >wi
07- Suniem
. uedw L 09
PaziCuLION
79'=4 ‘onsiuudop : y "o
=4 ‘onsiuy p :own ssao0e ‘(t ) ueiBueprg :awn Surssadozd v,
$3553008 pIom Buo] im snQuN JO 19pow J1omdu Jutdnand) [/ 1z andiq -

AN A5

nps
AN



s el " e - L v v .y . . s - o - . - - " o e ~ »

T ol . .. g WAWTNODYYWAR ol ol v hAANG BEX 2 AR DR A
A WA S NS LA Al a EPLPPEES P AN “ AT S BT WY
=X El X ¥ Nl\*l‘l s X o n U o, X 4 A ‘ » 5 [ f*.f~ R Flaed - ~

> # AP WP P EANNNANS CALSLES SR Al RAN IR Aty ..w.v.w‘.r,v. S R .“,-.\\.‘....,..u
“ i
K \; ;
K %

: ’2
: \
- 810882201d jO JoquInN

- z ‘

Qh o b s bk 2 05 4 0§ 2 oo

- \\.\.\\ = g

: A

: A3
. -ath
Qi =2 5= 0=g (1s9nbai
Lue 10J)
Wb 05
§5=» 13d sum
5=
07= & . Buniem
=0 h.n\ uedt -0
o=g F=00=9 poTIRULION
Lo

79"=A ‘onStUIUUNDP 3w $$I2%e ‘[PHudu0dxd :dwn Buissddold

$9550308 PIOM SUO] LM SNQUINJA JO [9POW YIOMIdU Budnany) :§1°7 an3iq

102




e Pt ey ”' hf. A .L{.t’~v’.l’ﬂ &P ) ‘y] | - ’ A i *N

: .rm pﬂ:....,.,.-un” ..m. :......N”r :.W.HL HONTCT I Sl K SRR R AT AR TN S P .....xm
[N
)

P
-9
-0
1.
;.‘- ‘.ﬁ_:; . :'J‘.:::

&

s10s50%01d JO JoquINN

b % . & [/
I — — — 00 .-n 2
= - >
\ -0l
- 07
KA
-0+
(1sonbai
Kue 10§)
1591tbas L 0'G
1d sum
Suniem
g-= Q/ ueaw - 09
-»d 8 V7
‘ =0 0 B3, s pazZifewIoN
0=y
79'=4 *nSuuNp ;3Wn sS0e ‘(1x2) W se siaaurered € 47) jenuduodxdsddAy awn uissadoid

$3553202 p1om SUO[ (I SNQNINIA JO [OPOW JJOMIU Sutenand) :61°7 21n31-]




T < gt g8 CWUSUWUROR W TR T D ! T T i ph at
\, J
o
NN
104 MultiBus Modcls :: '
o
\‘. .
A carctul examination of Figures 2.17. 2.18. and 2.19 reveals that for any piven a and fi the :
curves differ only in the knee arca. In cach case. the mean waiting time in the knce arca iy feast .
for the Lrlangian distribution and greatest for the hvperexponential distribution. This finding s ";-‘
consistent with our findings with the previous models: the mean waiting {ime in the knee arca _::::::
gencerally increases as the "randomness” of the (processing and access) distributions increases. In :':':.
cach casc however, the change in the mean waiting time duc to the different processing time dis- h' ‘.
tributions is much less than the change duc to different values of the parameter 8. For example, E::;_
for a=-10.0, the Erlangian curve is at most about .2 below the same curve for the cxponential, and :‘:'_::
the hyperexponential curve is at most about .S above the same curve for the exponential. ~
The difference in mean waiting times cffccted by cxponential versus deterministic distribu- e
tions for the access time can be ascertained by comparing Figures 2.5 and 2.18. ‘The difference in ‘;
mean waiting times is greatest in the knee arca of the curves and increases with N, as observed :y
with the carlier models. For a=10.0, the difference is at most about .70, Changing 8 from .5 1o ::'_\
1.0 results in a change of at most about 1.5 in the mean waiting time. ‘Iherefore, for the distribu- o
tions considered, the mcan waiting time is more sensitive to the value of # than the form of the ::::j:
distribution. Indecd, the value of 8 determinges the asymptotic value of the mean waiting time and ~‘-
the location of the knee in the mican vaiting time curve. ‘The processing and access lime distribu- :,:_:
tons just determine the “sharpness” of the knee. ._ |
The above discussion suggests that it is best o study the factons influencing die parameter g, :';
whilc perhaps assuming analytically tractable cxponential distributions for the processing and :‘:-:_
access tirnes, before studying in detail the etfict of differcut distributions. ‘-;.'::';
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2.9 Multibus Model with Long Word and Ringbus Accesses

In this secton the Muolttbus mode! discussed so far s interfaced with the Ringbus, As gf\".
doesctbed mosection 128 we bave docomposed the overall Coneert maodel inio two maodels - the ::‘::E
Multibus and the Ringbus - o make analysis tractable. When analyzing onc modcel. the operation "_:.':
of the oiher s replaced by an equivalent lumped modcl. In this section we replace the Ringbus by ;,;:
s equivalont access tme distribution, in the sequel we will be interested in approximating the v
Ringbus access ume distribution by one with o small nuinber of parameters (in particular a single \ﬁ“
parameter) so that we can casily solve for the nteraction between the Multibus and Ringbus :::: i
modcels. For now we consides the Ringbus access time distribution to be general and unspecified. ,"";

We can extend the Multibus model with long word accesses that was developed in section '.-_
2.8 1o mddude Ringbus accesses. We regard a Ringbus access as occurring with probability ¢ and a ,.:.’_-\.
Multibus access as occurrimg with probability 1 ¢ otherwise the model remains as in secoon 2.8, :;-f.;:
Actuddly, any Ringbus access begins as a Multibus -aceess. The Ringbus interface board (R1B) ;f':"'

determimes which Multibus accesses are permitted 1o use the Ringbus based on the address at
which the read and/or winite s o be peiformed. Recall from section 1.3 that we term a memory
operation - read and/or write - that occurs in the Ringbus address space (i.c. requires the
Ringbus) « Ringbus access. Similatly. we call a memory operation that occurs in the Multibus
address space (i.c. dues pot require any pordon of the Ringbus) a Multibus access. Thus a
Ringbus access requires mastership of thie Multibus, but the actual access occurs in the Ringbus
address spacc.

The new model can be described more precisely by introducing clisses of customers as in
scction 2.8. We now require a total of seven classes; the classes 1 through 4 are the samic s in

scction 2.8.

Cr ;

R ' Muitibus
ccovery afler «
r\ Multibus access T /l" v access
Frocessing - (
) > 1 ¥
Recovery afier 0TS Queue Ringbus

Ringbus access

access

=
AL
..' ‘l' ﬂ-.% !

N N
)

N
4

¥.'e

Figure 2.2000): Multibus model with Ringbus accesses
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106 Multibus Models

Multibus access: Ringbus access:
byte, word, or first socond word of
word of a long word Recovery a long word

Completed
acoess

Ringbus access: Recovery Ringbus access:
byte. word, or first sccond word of
word of a long word a loug word

Figurc 2.20(b): Class transition diagram

Figure 2.26(a) depicts the new model and Figure 2.20(b) shows a class transition diagram. As in
Figure 2.14 in scction 2.8, the circle in Figure 2.20(a) labcled “processing” denotes all processors
which arc processing and the circles labeled "recovery™ denote the processors which are recover-

ing. ‘The details of the madel are as follows:

l.ct the request for a byte, word, or the first word of a long word access from any processor
be represented by a customer of class 1 for a Multibus access or by a customer of class 5 for a
Ringbus access. After a class 1 customer completes its access, it becomnes cither a class 2 customer
with probability 18 or a class 3 customer with probability 8. and returns to any free processor
(all processors are considered identical). Class 2 customers represent {ully completed memory
accesses - byte, word, and long word (both accesses) - and class 3 customers represent half com-
pleted long word Multibus accesses - only the first word completed. Upon reeciving a class 3 cus-
tomer, a processor waits a time £, given by the recovery time distribution before gencerating a class
4 customer, representing the request for the second word of a long word Multibus access. Upon
completion of this seccond word access, the class 4 customer becomes a class 2 customer and
returns to any free processor.

With probability 1 —y this request is for a Multibus access and is represented by a customer
of class |; with probability ¢ this request is for Ringbus access and is represented by a customer
of class §.
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Multibus Models 107

After a class § customer completes its access. it becomes cither a class 2 customer with proba-
bility 1-- 8 or a class 6 customer with prebability 8, and returns (0 any free processor. Class 6
customers represent half completed long word Ringbus access - only the first word completed.
Upon receiving a class 6 customer, a processor waits a time £, given by the same recovery time dis-
tribution as before and then generates a class 7 customer, representing the request for the second
word of a long word Ringbus access. Finally, upon completion of this sccond word access, the

class 7 customer becomes a class 2 customer and returns to any free processor.

Customer classcs 5. 6, and 7 arc complctely analogous to classes 1, 3. and 4 respectively,
cxcept that the former refer to Ringbus access and the latter to Multibus accesses.  Exactly N cus-

tomers arc always somewhere in the clused loop of classes 1 through 7.

As in our previous model, the processing titne distribution is identical for all processors, and
the recovery time distribution is the same for all processors. ‘There are two scparate access time
distributions: onc for Multibus accesses and onc for Ringbus accesses. ‘I'he Multibus access time
distribution is the same for all bytc and word (fist or sccond word of long word) Mullibus
accesses and the Ringbus access time distribution is the same for all byte and word (first or sccond
word of long word) Ringbus accesses. We denote the access time of a4 Multibus access by the ran-
dom variable 4. and the access time of a Ringbus access by the random variable 4,,,. The ran-
dom variables 1, . ignp. lep are cach assumed to be indepenident of other random vaciables and

independent of all classcs.
2.9.1 Analysis of Multibus Maedel with Loag Word and Ringbus Acccsses

29.1.1 Asymptotic Behaviour

The Multibus throughput is now — P Where p is the fraction of time (i.c.

O = ¥Vamp + Vign
probability in stcady state) that the Multibus is busy. ‘The throughput balance equation is thus:

UHBN _p @17

Leve la
where 7, is the average access time given by £, = (1= aap + Wiarp and Ly is the average cycle
time given bY feye =lp # by, # 1y + By + 1y, +15)
As in scction 2.8, 7,] is the average waiting time for a byte or word access or the first word
access of a long word and i,,z is the average waiting time for the second word access of a long
word. Now howcever, l_,,l and i,,) refer to the average waiting time of both Multibus and Ringbus

accesses. 1t is certainly possible to partition !_..‘ and 7,,2 cach into one component for Multibus

e et
L LS ottty o,
ﬁ-‘:“h{:{L‘.‘A {}!.:,l'.\ »' :..‘\ e el

Pt

LAY
N

&

CX AN Y
)




L] iy 4 ‘a i 1 gt b ak gt 4 gt g ¢ J . ™ € g, gt At e, s ...
1, 3, & :::;:.
oy
A
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0
‘:"
accesses and another for Ringbus accesses, but we choose to continue looking at the overall wait- $|$
- - y X3
ing timc per request. Note that in general, I, # 1y, as discussed for the case in section 2.8, ’
0
The mean total waiting time (or wasted time) per processor cycle is 1y, =1, + B1,,. Combin- iy
. . . . . - . . Da
ing this cquation with the cquation for £, and cquation 2.17 yiclds: o::‘t,:
N l!'el
ty, =(1+B)—lg —tp —(1+ Bty — B4, b,
[ v .
~ .:
As discussed in section 2.8, we choose o0 normalize ;‘"r by thc mcan mcmory access time '7' ':
Im =1g +B(1, 4 1,) in order to retain our carlicr interpretation of the knee. Thus O
- N e
- .
?I- = P S S ——— (2.18) E:: )
m e By By+(L+BXI+WE-1) v,
(0 +BX1+ S~ 1) - Iyt
1, 1, l, RB VKo
where a = —2—, y=— L. and § == e
laMR laMp lamn ~nt
o
by )
N T a+yf . LY
As a function of N, —-- has a knce at —~— 1" ~1 and an asymptotic slope of _n._
im (14 BXI7 $(E 1)) Sl
- LN
1 L lny ey
—————--————— _ which is always less than or cqual to 1. As N—00, p—1,s0 — is ‘:'.:’.
+ ___,___.E!__ ——_— ’m :\':-:\‘
(1+BXL+¢E = 1)) N
asymptotic to cquation 2.18 with p=1, Ry
2.9.1.2 Deterministic Behaviour s
J'.--'\' 8
Consider now the casc when 1, £, tymp. and f, arc deterministic quantitics. The max- :::::-"
imum memory access time is 2,4 + /4, (assuming that ;5> l;mp). Thus I—WT:O for s
b * . \'-';
<|z--=-- | + 1=N,;, where N; corresponds to the knee when =1 and ¢ =1. ;.'_.I._
app + 1y 2 +y N
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‘Ihe following thcorem shows that the bus is busy when N2> "'— +1=|al+ l—=-N,: rcgardless AEN
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of the value of 8 and ¥. N, corresponds to the knee when B=0and ¢ =0. ; *,1:‘,
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‘Theorem 2.6 _ -:'::‘."
Consider the Multibus model with long word and Ringbus uccesses described in the begin- 3" i
lSa
ning of scction 2.9. If 15, toyp. Lgp. and , are deterministic variables such that 1, <i1p, % ‘a:;,‘
e
. MY
<t <lpn. >0, and N> p +1 and if cach of thc N processors has completed at ;f
aMB Y
least two memory accesses - byte, word, or first or sccond word access of a long word - then the ’;..
! J
fraction of time that the bus is busy, denoted by p, is 1. s
S AN
\J
[ e
Proof: N
Given by ‘Theorem 2.5 with 4, ia = laM B A

o~
’—"’r ; !

From ‘Theorem 2.6 we conclude that — cquals its asymptotic valuc for N >N For &

l"l

: 1, N
W, A
N,'<N <N; and 0<A8<1 and/or 0<y <1, —Lis strictly positive, again by an argumcnt similar .:~,'.‘-
Iy SN

O
to that in section 2.8.1.2. :;:5‘,

The three possible cases are depicted in Figure 2.21.  As discussed in section 2.8.1.2. the

-

i
I’y

curve in Figure 2.21(c) is rounded in the knee arca duc to the randomness introduced by tlic pro-

'}

Sy
7’

babilistic choice of Multibus versus Ringbus access and word versus long word access.

=
x

s
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(a): B=0and y=0 e
Knee: a +1 Asymptotic slope: 1
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0 3>
1 N
(b): B=1and ¥=1
Knce: 32-;1- + | Asymptotic slope: 1
1+-L
28
/i,
T 74
0 L — >
] N, N, N
{c): 0<B<1 and/or 0<y <1
; 1
Knee: a f—gl + 1 Asymptotic slope:
L+ X1+ 9= 1) ymprotic siope By

Figure 2.21: Represcntative cases of 1, /1y vs. N in deterministic case
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2.9.1.3 Product Form Solution

-
~

‘the FCFKS queuc for the Multibus is no lomger quasi-reversible in general, since the service

time depends on the class of the customer; Ringbus accesses may have a difterent service time dis-
tribution than Multibus accesses. Certainly, the IFCI'S queuc remains quasi-reversible if ¢ =0 and

the Multibus access time distribution is exponential or if ¢ =1 and the Ringbus access time distri-

bution is cxponential. ‘The analysis in cither of these two cases is the same as in section 2.8. How-

|
ever, we are interested in the gencral case when 0<y<1. Since the FCI'S queuc is not quasi- ;
reversible for 0<y <1 (unless the Multibus and Ringbus access time distributions arc identical), {;

3

we cannot usc the product form results in scction 2.6.1 to give an exact result (no product form
solutions arc known for non-symmetric FCI'S queucs). We can however, find an exact product

form solution for a slighly different model than the one in whicli we arce interested.

| Consider the model presented at the beginning of scction 2.9 with general processing,
recovery and access time distributions. Obtain a new-model by replacing the FCES queuc for the
Multibus by a server-sharing queuc. (A server-sharing qucuce is cssentially a round-robin queuc
with infinitesimal quantum size so all qucucd customers arc in service simuliancously.) Since the
scrver-sharing quecue is quasi-reversible, this new modcel has an exact product form solution. We
will now derive the exact selution for this new model and use it to approximate the solution of our

original model with a FCFS qucue.

let the global statc he X ==(xp.y) where xp represents the state of the processors and y
represents the state of the server-sharing queue for use of the Multibus. As in section 2.8.1.2, the
processors can be considered as comprising an infinite server and thus they forn a quasi-reversible
quecuc (with respect o a Markovian state description).  As mentioned carlicr. the server-sharing
qucuc is also quasi-rcversible (with respect to a Markovian state description). ‘The quasi-

! reversibility of all the qucucs in isolation yiclds the product form:

Sl PR

Let xp={(nynyng) and y =(nnsingnqg) where n; is the number of customers in class i. 1.ct

A,"ff represent the cffective arrival rate of class 7 customers. Then from the results in section 2.6.1

wc have:
)
: )" i i
: T ny ns! ne!
!
\

(my+ns+ng+ny)! _ _ - _

' "y = S T A ) O 1) N 1o N )
. mylatnglng!
; Now AT NTT BN AT NI -pA . AT = NP, and AT s/,
{ .
;
b -
1 .
5 e :
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Simplifying, we finally obtain:
+n,) m,
Ip 2

o
nr!nk.n,‘l!n‘z! )

(n
Ca" B ng 4 na N ¥ +8)

gy =——— -

: /, l
where ny =ny, ng =n3+ne. ng,=nytns, and ng =ng+ny As before, a = —7—, Y== —, -
lamn lamp Mty

_ larn o . o . N

and { = ——_. Notc that cquation 2.19 is cxactly the same as cquation 2.16 in scction 2.8.1.3 -
lavn W

'l_l.

(n, +u,)
except for the (1--¢ +¢{) “ term. We can imagine a similar term in cquation 2.16, i.c.

(n, +nm,)
“1777 and thus both have cxactly the same form.

P A
%{'rl'k‘.'n

T P Tes 2 8 7
’
[4

%

Using the results of section 2.8.1.3 we immediatcly have:

hY
LS

)

58

1) the stcady-state probability of a total of ny, 0<n; <N requests in the queue is

o

¥
L

(1 +BX1--¥+¢8)
atfBy

N NN

'y

. . N1
Prob(n, in queuc)=(C'" o "’__)?

N \..‘v.":
LA Ay

’

R R

where €'Y is a normalizing constant

LA

2) 1y, =1y,= 1y

2 3 '
b Ec g m
W -T2V

" ",
(1 +BX1-¥ 1 ¥{) 1 where N ..::::
a+By

lo= (1= Vapp +¥larp.

Points (1) and (3) arc the same results as obtained with the M/M/1//N maode! in scction 2.4 .

(cquations 2.1 and 2.2) when a —-'; in the M/M/1//N model is replaced by ?l_fE:{B.Z; @5 :-S':;

- . . ’W . . a ’ﬁy oV \
Vherefore with a server-sharing queuc, -— is asymptotic to N - -— = -T 0. for large N. S
8 (A +BX1 ¢ +¥8) Ny

la

’W

. . . - - . r l+ IW R
Point (2) implics that 4, (1 # B)1,,. Thus - = SO Lbs pl——x —. RN

Im B e
1+8+ ..

1+¢(§-1) -

To gauge the accuracy of the result for the server-sharing modct as an approximation for the
original model, consider the Multibus model with long word accesses in section 2.8. ‘The product .
~'
form solution of this modcl is cxactly the same for FCFS and server-sharing disciplines at the Mul- e
tibus qucuc. Howcever, the product form solution with the server-sharing discipline is more TR
comprchensive: it is exact for general distributions for the processing, recosery, and access times i"‘\'
"=l ]

~

(i.c. it is not limited to an cxpoucntial aceess time distribution as with the FCES discipline). Since TN
oY
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.l AN e e
RN A AN

o




Multibus Models 1’

the product form solution is the same for IFCIFS and server-sharing disciplines, the simulations
reported in section 2.8.1.4 may be used to Jdetermine the accuracy of the sclution tor the server-
sharing discipline in approximating the solution for the FFCES discipline. We reach the same con-
clusion as in section 2.8.1.4: the approximation is cxccllent except in the knee arca and in general,

ty#1,,. In the knce arca, 1, with the scrver-sharing discipline is o large for some processing
time distributions (those with € ',' <l it scems) and too small for other processing time distributions
(those with ( ',’>l it scems). Extrapolating. we expect roughly the same the accuracy of our
scrver-sharing modcl in section 2.9.1.3 as an approximation for the original FCI'S model.

It is important to temper the previous scntence with the observation that we are basing our
extrapolation to the case with general Ringbus access time distribution (of possibly Lirge variance)
on the simulations performed for deterministic access times. Howcever, the accuracy of the server-
sharing model will likely remain very good cxeept around the knee arca where we expect the
greatest inaccuracics o accruc. We have chosen not to perform any simulations to determine
further the accuracy of our server-sharing model. The reason is that, as in section 2.8.1.3, we
cxpect the mean waiting time to be more seasitive to the values of the paramcters, such as 8 and
Y. than the exact form of the probability distributions. Therefore it scems hest to study the fac-

tors influencing the parameters before studying the cffect of the probability distributions.

2.9.1.4 A Special Case

In the special case when the processing time is cxponentially distributed and there are no
long word accesses (e B =0) an cexact result for the average waiting time per request can be
obtained trom the M/G/1//N results in section 2.5, Since there are no long word accesses, we
can combine the Multibus access time and Ringbus access time distributions into one access distri-
bution.  Specifically, if the Multibus access time distribution is Prob(igmp <t) = F;mp (1) and the
Ringbus access time distribution is Prob(t,,s <1)—~ I, (1). then the overall aceess time distribution

is 1,00) - (1 - (1) + Y1y (1), The average waiting time 4, can be determined by applying
o0

the formulac in scction 2.5 with #°(s) = fe T, (x).
0

2.9.2 ‘The Single Processor Equivalent of the Multibus

As discussed in section 1.2.4, we have decomposed the overall modet of Coneert into Mul-
tibus and Ringbus modcels and when dealing with once of these models. we replace the other
modcls by cquivalent models. Up to this point we have examined the Multibus model: we have
assumed some Ringbus access tine distribution and determined the performaice ot the Mulabus

model with that distribution, Now we examine the single processor equnalent model or the

"l.l.‘l-_l- -'l"'.i
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Multibus.

The single processor equivalent of the Multibus is characterized by a processing time distri-
bution, Ringbhus destination probabilitics, and f#--0. ¢ .- 1 (as discussed in section 1.2.4). ‘The pro-
cessing time distribution preseants the most difliculty - we miust find the probability distribution of
the Ringbus s»pacing.t ‘I'he Ringbus destination probabilitics are trivial to dctermine. Since we
have assumed that all processors in the Multibus model are identical. the Ringbus destination pro-
babilitics for the entire Multibus arc the siume as that for onc processor. ‘Thus the Ringbus destina-
tion probabilitics for the single processor cquivalent, denoted by p,“ Bewv —are given by

P MBeyqv =p; for all i, where the Ringbus destination probabilities for cach processor in the Mul-

tibus modcl are denoted by p;.

‘The Ringbus spacing probability distribution is very difficult to find in closed fornn.  Instcad,
we choose to approximate the Ringbus spacing distribution by another distribution with the same
first moment. We could also use higher moments in the approximation ot the Ringbus spacing
distribution, thereby achicving greater accuracy. However, higher moments are progressively more
difficult 1o obtain from the Multibus model. We therefore choose to stick with our simple first
moment approximation and cvaluate the results before considering more complex and accurate
approximations. Indced, the results so obtiined may be sufficiently accurate that more accurate
approximations are unnceessary. “Fo case analysis, we choose an exponential distibution, which is
completely parancterized by its first moment, to approximate the Ringbus spacing distribution.
Recall from section 1.2.4 that the processing time probability distribution of the single processor
cquivalent 15 cqual to the Ringbus spacing probability distribution. Thus we have just approxi-
mated the processing time distribution of the single processor equivalent by an exponential distei-

bution. L.ct the mean of this distribution be denoted by l_,,"m“’".

‘Ihe Ringbus access time distribution is also very difficult to find in closed form (as we shall
see in Chapter 3). For the same rcasons as above, we choose to also approximate the Ringbus
access time distribution by an exponential distribution. Since both the processing time distribution
of the single processor cquivalent and ihe Ringbus access time distribution arc thus completely
specificd by their respective first moments, integrating the Multibus and Ringbus modcls reduccs

to first moment matching, rather than the (considerably) more difficult sk of matching continu-
ous distributions.

We now determine the mean processing time of the single processor equivilent of the Mul-

tibus in terms of Multibus parameters. The mean time between initiation of Ringbus accesscs is

. Mﬂcqv - . . . i .
t +1 . I'his mean time is also ven by —— i where,
p aR B g y (1+BINY

t I section 1.24 we dofined the Ringbas spacing to be tne mierval between the compliction of one access on
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leye =lp 4 w4 1y #BUr # 1y, #1,) and 1, =(1 - Mapgy # iy Thus the mean processing time v

of the single processor cquivalent is givea by

- i
Loy
= MBeqy o
I} —— -1 2.20 4
P (BN Y aRkB ( ) A :
R'o:
To procced further we require a relationship between 1, =1, +B1,, and the Multibus ..
e
paramcters. We choose to use the exact results for the scrver-sharing queuc model developed in \"_
section 2.9.1.3 to approximate the gencral casc. ‘There is, of course, some crror involved with this _::-'_:'
n..-.-
approximation, but at lcast we have a convenient result expressing the relationship between Ly :_ ¥
and the Multibus paramcters. As discussed in section 2.9.1.3, the scrver-sharing qucue modcl R
N
should give fairly accurate results for Iw, cxcept around the knee arca. Substituting the cquation :: "
“ne
- i Tl
for £, inlo cquation 2.20 we have: o
ba'u
_ 1, .
o (== +1) (= +1) 7y
1, +B1 { ! AN
7 MBeqv (4 r a - - (a+fy) a >
t e —_——— — { =, —— 2 4 (l-¢+ ——— - .
P (14 ﬁ)N¢ Ny akRB —tuMB a "‘ﬂ)N‘P ( v +{y) Ny § :::“
P
_ 35
IW . .. . . . p
where —— is the mean waiting time per request for the M/M/1/7/N model of scction 2.4 (cqua- o
lg :’\'.:
. . + "y
tions 2.1 and 2.2) with E_ “ By . -j\: :
A (H+AXL--¢ +¥0) '.-,v‘:
] ; — MBeqv .~ + 1- . i
For small N, == =0, and thus 7, ¥5 =7, (atBy) ,1-¥ _ {(1—3-)'. Iherefore
i (1+8NY Ny N NS
l- ( B ) R .-\{ s
=~ MBeqv . . . . . w a+py e
t is approximately lincar in { for smalt N. For large N, —=N - -1 5
, W (L+BX1—¥ +¥5) R
- - 1- s
and thus 7, MBeav =1 s ( M-. a constant. s
~
As we shall sce in scction 3.9.1, we need onc more quantity from the single processor

cquiv ilent of the Multibus when we integrate the Multibus and Ringbus models. This quantity,
which we denote by Py is the probability that at the termination of a Ringbus access. the Mul-
tibus qucuce is nonempty and the request at the head of the queue is a Ringbus request. In other

words,

Prg = Prob(a customer departing from the Multibus qucuc Icaves a Ringbus request

at the head of the queue |the customer departing is a Ringbus request) =
A
i Y
the Multibus with a Ringbus desination and the start of the next such aceess on the Multibus. e
P
2208
=
TN
MOAY
- - - . l*
. "-‘f.’;f".”". -(-'-{-'l‘.-..nr-(-f--.c-’v AT -.‘_'~'¢-‘..1....".-.\ AT SRR R I S P T TR L P I.‘l’
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»
A clused network of quasi-reversible queucs has the preperty that when a customer of a ."-.:
given class arrives at or departs frem a queue, the other customers in the system are distributed
according o the stcady-statc probability distribution obtained if they were the only customers in
the system {Theorem 3.12 of Ref. K1) Thus Pgy in the server-sharing queue approximation of the
gencral casc is given by the stcady-state probability of the customer in service - i.c. at the head of
the quecuce - representing a Ringbus access in a N —1 processor system. (N is the number of pro-
cessors in the original system.) We denote this probability by p,'yﬁ' Lolet p’v“' denote the
stcady-statc pmbubilfty of there being any customer in service in a N — 1 processor system.
Using Littlc’s Law we have p#,,"zxﬁ’,{ (N —l)l_ag B and pN "——M{{,‘N ‘”l—,,. From scction
2.9.1.3 we have
0
(N=-D_eff(N=V) x¢/f(N=) 5
AK/ =A§ +Af .':-'::
h.\(\
=91+ BAFIN D o
V(1 +BIA; s
A;{JI(N - I)_—)‘lvff(N ~ l)+)‘]cff(N —l)+)‘sfff(N -1 +M'.U(N—l) e
et
XN
=(1 _,.B)Azt‘ff(N -1 :::--,w
N,
o
and o
L =((1-¥$)+ ) uys
Thus
o Vlare - ¥ -
ol te YIRE N1 { o -
1 -y +8y

We have alrcady noted that the scrver-sharing queuc miodel in section 2.9.1.3 has the same

solution for 1,/1, as a M/M/1//N qucuc model with y_:____a_téy_ —— . 'The same holds
w/la d TRy TS

for the probability that the scrver is busy. That is, pN “lis the probability that the server is busy
a tBy Finally, Ppy —‘-—-‘“- ——»pN -1

in a M/M71//N-1 system with £

A (L+BXI- ¥ +y8) -y +¢¢
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2.10 Extensions
I'he Multibus models considered so far have four main weaknesses:
1. All processors are identical.
2. 'The processor modecl is very simple, perhaps too simple.
3. 'The processor model is stationary, i.c. time independent.
4. All processors are independent,

We assumed points 1 through 4 in the previous sections to obtain simple and analytically

tractable models. In this secction we consider extensions to relax cach of these assumptions.

2.10.1 Non-identical processors

‘Ihis case is straightforward to handle by simply adding maore states to the Multibus modcl
to represent the different combinations of non-identical processors. For example, we can change
the state description of the M/M/1//N model in section 2.3 from (u), where s represents the
number of requests waiting for or in service to (n.cp.c3. - -+ .¢x). where n is the same as before
and ¢; represents the processor from which the i request in the queue originated. In a sense, we
now have N classes of customers (for A processors) where there is one class per processor. Simi-
farly. we can add classes to the Multibus modct with Ringbus accesses in section 2.9 to distinguish
the respective processors at which requests originate. For example, we could choose the clisses
Hi—=V+L =112, -, i -D+7, 1<i<N, where ¢ denotes the originating processor and
TG -1+ 1, TG -1)+42, -« T(i —1)+7 represent the 7 classes (as in section 2.9) associated with
the originating processor i. A product form solution, similar to that developed in section 2.9.1.2,
can be developed with respect to these classes.

Since the processors are now non-identical, the mecan waiting time per request, 1. is not
necessarily the same for the requests of all processors. 'This complicates the caleulation of the
throughput. It is probably best to consider the mean waiting time per request from processor §, for
all i, rather than the mean waiting time for any request given by 1,

Note that whilc the case with non-identical processors s straightforward to handle, the state
space required and the complexity of the analysis increases without necessarily contributing much

insight.

2.10.2 More Complex Processor Modcls
This case can again be handled by increasing the number of states representing the Multibus
maodel. We assume in this subsection that the processors are identical, independent, and stationary.,

Lhese assumptions can be relaxed by the mcthods discussed in the preceding and succeeding sub-

scctions.
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Within the assumptions stated above, we can make the processor model arbitrarily complex
and. provided that we can find a Markovian state description of the processor, we can augment
the state of the Multibus model with the state of cach processor model and in principle solve for
the stcady-state probability distribution. Once we know the steady-state probability distribution we
can in principle determine any related performance mcasurement of interest. ‘The difficulty, of
course, is with the "in principle” part.

Onc quitc general way to proceed is to approximate the entire Multibus model (including the
processor models) by a queucing network model with a product form solution. One advantage of
this approach is that we can decal with the maodel at a more abstract level. 'The states nced not be
Markovian: it suffices that cach queuce is quasi-reversible in isolation with respect o some Marko-
vian state description but we need not find or deal with such a description. A second advantage is
that we can obtain analytical expressions for the steady-state distributions and hence for the per-
formance mcasurcs of interest. A disadvantage is that incvitably some simplifying assumptions arc
involved. In some cases the nccessary simplifying assumptions may obscure or climinate the
features of interest. In such cases onc must resort to other methods such as simulation. (There is a

paucity of methods for dealing with large non-product form systems.)

A way to extend the processor model using a queucing nctwork model is to consider the
processer operation as consisting of a set of activitics, say Ay, Ay -+, Ap. One activity might
correspond to program exceution in the processor’s locil memory, another might correspond to
reading or wriiing global data. and yct another might correspoid to busy waiting on sonie global
memoty location, and so on. (Of counse, with our independence assunption. the period of time
spent busy waiting must be independent of the operation of the other processors.) Associated with
cach activity is some interarrival time of requests for the Multibus, some interarrival time of
requests for the Ringbus, a probability distribution for the time spent in that activity, and a proba-
bility distribution for the next activity (which may depend on the previous activities and the time
in cach). We can describe the overall Multibus model by a qucucing network by regarding the
activitics as gqucues (scveral qucucs may be necessary to describe cach activity) and the operation
of the processors as customiers which move from queue to quene. ‘The customers can belong to
classes which represent the previous gqucuc(s) visited, the service tiine at a gucue, and so on (pro-
vided cach queuc remains quasi-reversible with respect o the classes). Finally, the transition from

onc class to another can be governed by a probability distribution depending only on the present

class.
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Figure 2.22: Qucucing nctwork model with processor activitics

A qucucing nctwork model for a thice processor system with three activitics cach is depicted in
Figure 2.22.

If cach queue is quasi-reversible in isolation, then the global state probability has a product
form solution. Since there is at most one customer per class (we assume that there is a total of one
customer in all the classes associated with a single processor - more than onc would correspond to
a4 multi-tasking processor), the scrvice time distribution at cach qucue except the FCES Multibus
qucuc may be completely gencral. As discussed in sections 2.8 and 2.9, the scrvice time distribu-
tion at the Muitibus queuc must cither be exponential with the sime mean for all customers or the
queuc discipline must be server-sharing.

To iltustrate the activity-based qucucing network model more concretely, we consider the

following gencral case.

[.ct there be N, not necessarily identical processors. 1.ct the madel for processor ¢ consist of

Q(i) queucs Q. Q’z. SR ()’,»(,, and the Multibus qucuc (which is common to all NV processors

Y
~
~
)]

madcels). Let there be a finite sct of customer classes (°(7) associated with cach processor 7. Fach

K]
)
P
>»

customer class visits at least one queuc. Upon departing from a gueuc. a customer of class & joins
class [ with probability #';, (for processor ). Phe classes asseciated with processor ¢ fonn a single

. 'Y . . Al
closed loop including all (/) queues and the Mulibus queuc. thus 2 2 r'a L
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[.et there be exactly one customer in the closed loop of classes corresponding to cach proces-
sor. ‘Thus the service time distribution at cach queue except the Multibus queue may he com-
pletely general. (In additon, any customer at & qucuc other than the Multibus queuc must be
reeciving service.) We assume that the service time distribution at cach queuce is independent of
customer class. (for non-Muftibus qucues we can simply add more queues and classes (o circum-
vent this restriction.) We also assume cither that the Multibus quéuc discipline is FCFS and the
service time distribution is cxponential or that the Multibus queue discipline is server-sharing and
the scrvice time distribution is general.

By adding a sufficicnt number of qucuces and classcs, the general case just described can han-
dlc or approximate a wide range of activitics and processor models. As stated carlier in this sec-
tion, the classes can rcprcscnt' quite detailed histery, such as previous queucs visited and the ser-
vice times at those gucucs. Thercfore one can even have an approximate distribution for the time
spent in an activity by defining classes to represent the time clapsed in a certain activity. (This
technique will be discussed in more detail in section 2.10.3.) By construction, cach qucuc in the
general case just described is quasi-reversible in isolation and thus the global state probability has
a product form solution. We now investigate this solution.

| .ct the global state be X =( xp.cce .,_rp,v.y) where Xp, represents the state of processor / and
y represents the state of the Multibus queue. Then we have the product form soluticn:
j=1
l.ct xp, =(g'1.--- .@'N) where g’j denotes the state of queue j for processor § and let

g’_,:(;lij(l).rrij(k). -+« ) for cach class /.k,- -+ €C (i) where ;1’j(k) denotes the number of cus-
tomers in class k at qucue j. l.ct A j denote the effective arrival rate of class j customers for pro-

cessor i. Conscrvation of flow yiclds

A= 2 Nrlyy . JECWH) Q2N
kCC (i)

Then the stcady-state probability of state qij is

In‘,(k)

‘Pi ik
. J
-_;('”lj| I I .

w ! —_
vy k€Cuy N (k)N

where n'; > n'i(k). o'k =5 ;N . and 57} is the mean service time at queue J for processor
k€C(i)

If we let q’j-—(itij) we have
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Y n'
fots|”

'qtl_ nlj!

where p'j-—- E p’jk and C'(i j) is the sct of classes arriving at queuc j for processor 7. ‘Thus
kCCU )
the steady-state probability of state xp 1S

.l
Iplfl /
v, =C'1]1—

¢ j=ioaly

) :
let n! :—‘ﬁa’,. Then if we let xp = (1) we have (since n' =0 or 1)
j::l

{
qn
_r i
"‘r—(' IPI
{

P .

=1

fij 2 N‘

e
where p/ = f:p'j——-
f=1 KEC (i j)

l.et the state of the Multibus qucue be represented by y =(m . - - - anp) where m; denotes
the number of requests in the gqucuc from processor 7. Note that m, -+ n! =1. Denote thie cffective
arrival ratc of customers at  the  Multibus  queue  from processor i by AMyg e

)\I.uli = 2 A, where C(i.MB) is the set of all classes arriving at the Multibus from pro-
kEC(I.MB)

cessor . Then

. m,
m l’\'.mcl

_ m= 2, m;
i=1

la
'”l! l=l

1r,.=m!

‘Ihercfore if the global state is X =(n R .nN,mb <+« my) we have

N --m ) m
i ' t
PN |P| l’\'.;ml
wx=( m!'l,,l
i) my!

o 2 Ay o

: Vi keCly)
=<-m| N | | B ML a.2)
Cee J ; .
ny oy my i=llj=1 A’MB
o 2 N
Y. . , . kCCUR - .
where ¢/ === (and n' =1--m, m; =0 or 1). The quantity --——)—‘7———- is the ratio for processor
la MR

i of the effective arrival rute aC queue § to the effective arrival rate at the Multibus quene.
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rE

The mean waiting time per request from processor i, l—,,l. and the mean waiting time per

request for any request, 1, . can be derived from equation 2.22.

’.

‘o

YO
= {5‘

We note the following two points about equation 2.22:

1. Equation 222 is dependent on the details of the model for processor ¢ only through the

M
>
-
r

L)
- i k€C G j) , Sy L
quantitics s'j and »———l.f!ﬂ— (for (j =1.---.Q(). 'The former quantity is given and the N A
Mg N
1“‘-
latter can be computed on solving the conservation flow equations 2.21 (within some arbi- .:" b/
. - ) ) .
trary constant). Thus the overall solution for 1, or 1, cffectively reduces to solving a set of o
o+
. . . - . . \]
lincar cquations (cquation 2.21) for cach of the N processors.  Since solving large sets of N ...u
* (]
such cquations is relatively casy, the main difTiculty with applying qucucing networks to A J
modcl complex processor behaviour is specifying the desired behaviour in terms of qucucs, -,,. A
L] =
service time distributions, and routing probabilitics. x
. . . . . . - o
2. Consider the model in section 2.4 with exponential processing and access time distributions ;" N
with non-identical processors. If we let the global state be Xexp = (m), - - - umy) where m; is £ "’
woul]
the number (D or 1) of requests from processor  in the Multibus queue, then the steady- ,Q-_i i
stic probability of Xep is -
AR
-
7 —m, :(\:‘,_\
=Y m ﬁ A (2.23) -$'~::\-
TXewp ™ mymac--myl! 7 ) e
PN i<l ’(I .('\
LA
where ;;P, is the mean processing time of processor i, (Equation 2.23 follows trom cquation ::;:
NN
. . N . . . . - . L
2.5 in scction 2.6.) Equations 222 and 223 arc identical if lp, 18 replaced by '.r:.-:
NS
i -
A aln
W i "F(ZUJ) ) - eff .”t”'q.
s =M. ‘Therefore the most complicated  stationary  model,  when |
=l A mn %
cxpressed as a qucucing nctwork model as described in the gencral case presented carlier, RS
has the same solution for 1, and ¢, as the simple exponential processing and access time e
Sleltd
- - ., ~
madel (with appropriate 1, rff)! It is fascinating that the single paramcter lp"'jf suffices in “Nn
~¢
the solution of an (almost) arbitrarily complex modcl. Of course, the underlying rcason for RN
. , . . : o . N
this result is the exponential access time or server-sharing discipline of the Multibus queue. -_'.~_'$
X
A possibility to circumvent the difficulty mentioned in point | is now apparent.  Simulate or ..:_‘:
a"Aa
actually run a single processor with the desired complex behaviour on a system with exponentially i
N . . . . . SOl
distributed access times (perhaps simulation is best to achicve such access times). Mcasure the ;.-"z_'
- “.-.' '
steady-state probability distribution and solve for the 7 ST which yiclds this same probability RS
P IR
: A

(l
7".
"‘a"_
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distribution with cxponcentially distributed processing time. Once the value of I—p"'ff has been
determined in such a manner for cach different processor, 7..‘ and 1, can be computed from cqua-
tion 2.23. "this indircct approach for determining l_w' and 1,, may be cheaper for a large number of
processors N than the obvious alternative of simulating the entire system since N simulation runs
of a single processor may be cheaper than onc simulation run of N processors (for the same
degree of accuracy).

Equation 2.22 is a finc result if the performance measures of interest involve just the status
of the Multibus qucuc and do not involve the status of any processors. If the measures of interest

involve both the Multibus and the processors, then we cannot simplify the solution of the queuc-

ing nctwork model to such a degree. This unfortunatcly means that the state spacc may remain

PAPL
Bk

e
Vs

large. Finding the solution of quecucing networks with a large number of states is computationally

hY

A
x,

expensive. Efficient techniques for handling such cases have been developed by Buzen [B3),
Chandy. Herzog, and Woo [C2). Reiser and Kobayashi [R2}), Reiscr and Sauer [R3), Chandy and
Saucr |C3], Lam [L.1], and Lam and Licn [1.2]. However, even these techniques require a lot of

work when the state space is as cnormous as it might casily get with complex models.

Another approach when the queucing network remnains large alter simplification or when
product form queucing network models arc not applicable, is to decompose the overall model into
morc manageable submodels, cach of which can be swdied and solved independently, and
integrate the submodecl results to obtain an overall solution. Except in special circumstances, such
a procedure yiclds only approximate results and thus several iterations of decomposition and

integration may be required to obtain results of sufficient accuracy.

2.10.3 Time Dependent Behaviour

3 ‘This subscction is directed chiefly towards time dependent behaviour of the processing time
distribution. We regard the access time distribution as mainly fixed by the hardware and thus time
invariant. Howcver, the probabilitics of the different type of accesses - word vs, long word and

{ Multibus vs. Ringbus - may well be time dependent, If these probabilities are time dependent they

can be treated in the same manner as the processing time distribution.

We limit our discussion to processor behaviours that can be reasonably well approximated as
time independent - i.c. stationary - on a finitc number of nonzero time intervals. The idea is to
represent cach stationary interval of this picce-wise stationary approximation of the processor
behaviour by a stationary submaodel. The overall processor model then consists of a finite sct of
such submodels, with exactly one such submodel in effect at cach point in time; the duration cach
submode! remains in cffect; and some strategy to choose the next submodel when the time allot-

ted o the present submode! is expended. Fach stationary submodel can be arbitarily complex -
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such as those models discussed in sections 2.10.1 and 2.10.2 - as long as it is stationary and
indcpendent of all other submodels.
We distinguish two cases based on the time required for a submodel to approach sicady-state

(i.c. for the transicnts to dic out) relative to the duration of the submodel.

Case 1: FFor cvery submaodel, the time required to approach steady-state is small relative to the
duration of the submaodel. (We will not discuss what is “short” cnough.) In this casc it may be rca-
sonable to approximate the behaviour of cach submodel over its entire duration by its stcady-state
behaviour. ‘The behaviour of the overall model can then be approximated as a picce-wisce function
of the stcady-state behaviour on cach submodel interval. In this casc it is probably best to
represent any performance measure of interest for the overall model by a vector of such perfor-
mance mcasures with cach clement of the vector corresponding to a different submodel.
Knowledge of the duration of cach submodel and the strategy for choosing submodels allows the
average of any performance measuie to be determined from its performance measure "vector™ on
all the submodcls. Note, however, that such an average performance may not be too meaningful;
at the least, it must be carcfully interpreted. Note also that the steady-state behaviour of the other
submodcls can be determined simply by assuming it is the only submaodel. Thus this case has the

important attribute that the overall modcel can be decomposed into a, iumber of smaller and

independent submodels,

Case 2: T‘or at icast onc submodel. the time required to approach steady-state is not small relative
to the duration of the submodel. ‘This case is more difficult since the dynamics of the overall
modecl preclude its treatment as independent submodels. (There are certainly situations in which
some but not all of the submodels can be treated as independent and approximated by their
steady-state behaviour over their entire duration. Perhaps such hybrid situations should be catled
Case 3.) To handle Case 2 we need to incorporate in the state description somchow the expended
time (or remaining time) in the duradon of the submodel in ¢ffect and the submodel (and perhaps
some past history of submodel choices too}. OF course we can specify a Markov process which
incorporates this additional information” but we again return to the more abstract qucucing net-

work models. In fact we return to the activity based qucucing nctwork model discussed in the
previous subscction,

We consider cach submodel to be an activity with some probability distribution, I4(r), for

the time in that activity and somce probability distribution for the next activity to enter given the

[ ]
it will almost certainly tuin out that it is oo difTicult to treat such Markov processes analytically exeept in
trivial cascs.
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Multibus Modcls 125

current activity. (This latier probability can be generalized to depend on past activities.) We
represent the set of activities as a queucing network model as follows,
l.et there be onc queuc per activity. ‘The service time at this queue has the same (stationary)
distribution as the processing time of that activity. (We consider a situation in which the processing
time distribution of the overall model is not stationary. We do not consider any other complica-
tions here on the basic queucing model discussed in section 2.1.) Let the classes associated with the
qucuc represent the total amount of processing time clapsed so fur while in that activity. Specifi-
cally, let there be classes
1. ¢'(indr) representing a request for the Multibus from activity i where the cumulative pro-
cessing time while in activity i is 1€[n At (n + DAr), and
2, ('2(i.l7Al) representing a request returning from Multibus service to activity 7 with cumulative
processing time while in activity i of 1€[nAr(n +1)A1). (We quantize time so we can deal
with discrete probabilitics for the time being. Wehave chosen quanta of uniform size for sim-
plicity in the presentation,)

The routing probabilitics at queuc 7 (i.c. the queue associated with aclivity /) arc:

l (m ~)Ar
Sp(s¥s. iEm>n and j=i
{m—n--1)Ar
plcinAtyc \mb)=

0, otherwise

where £ PX) is the probability density function (pd[) of the processing lime at queuc i, ‘The rout-

ing probabilitics at the Multibus queue are:

e'(rtAln),j if t=0and j#i

s GanAr)cGuaN={1—-e'(nAr) if1=nht and j=i
0 otherwise
pij is the probability that the next activity is /j given that the current activity is i (2[),:/:1).
j#i
e'(ndAr) is the probability that activity i ends in [nAr(n + 1)Ar) given thai the sum of the pro-

cessing times incurred while in this activity is 2 a4y, i.c.
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(n + DA
Sats)ds

Prob(n At Sdi<(n + VAN AN = "2 prob(d; <nAN<I
J £4(s)ds
nAs

ei(r:Al)z
1, Prob(d;<nAt)=1

where fd,(l) is the pdf of the duration in activity .

We now have a queucing network model of the form discussed in the previous subscction.
From cquation 2.23 we know that the steady-state probability distribution of customers in the
Multibus gqucuc (from which we can determine I—,,' and 1,,) depends on the mean processing time
while in cach activity and the ratio of the effective arrival rate at cach queuc to the cffective
arrival ratc at the Multibus.

Denote the cffective arrival rate of class c'(i.nAl) customers by A(c’(i,nAl)). Then the

> Ay

ratio Lﬂ('—’)— of equation 2.22 is given by
MB
o0

> NcAinAd)

n=0
;_‘—031 ———— 2.24)
7 DNcnan))

t n=0

The conservation of flow cquations are

}\(cz(i.nAl)):(l —e'(nANA(c l(i.nAl)) + Epj,-ej(n ADA(c l(leAl ))

J#i

and

—1 (m—n)Al
)\(c'(i.mAl)): f o (s)ds)\(cz(i.nAl)).
n=0 (m—n-NHAt !

Manipulating these equations we have

00 00
2 )\(('(i.mAl))—— 2 A((‘z(i.mAl)) (2.25)
m=0 m =0
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A

.
13

(m —n)A¢

=1
Ac '(i.mAl))znz [ 1)t - el mANC G b)) 1 Dpjie’ (n BN A1)
n=0(m-n-1)At ! ji
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The ratio in cquation 2.24 is determined by the solution of cquation 2.26 and the identity

Ly

2.25. ‘The system of lincar cquations 2.26 can be solved for Ac'(i n A1) within an arbitrary con- " '}5
stant. ‘Thercfore, as in the previous subscction, the overall solution for Tw' and 1, cffectively :S.‘:
reduces to solving a sct of lincar equations for cach of the N processors. E::::\:

It is highly dcsirable to keep the number of time quanta fairly small so that the number of ;:‘.’2]
equations to solve in 2.26 is not cnormous. ‘The degree of inaccuracy introduced in the solution by _v*-‘*
the quantization can be cstimated by comparing the solution with that obtained with a larger A

L%
7
S

number of quanta.

' S P |
_—l&ﬁfﬂ

Finally, this trcatment of nonstationary processor behaviour can be extended, along the lines

of the previous subscction, to deal with more complex processor behaviour.,
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2.10.4 Dependent Processors

By dependent processors we mean that for at least onc processor § there exists some time /
such that the operation of the processor is not statistically independent of the operation of proces-
sor j for all j#i and for all time s <r. T'o model dependent processors, the state of a processor
inust be allowed to depend on the state of other processors, This dependency unfortunatcly pre-
cludes the use of qucucing network models with product form solutions as we have pursued to

this point in this thesis. ‘I'he reasoning is as follows.

In a qucucing network model, the state of a processor is given by the concatenation of the
states of all queues representing that processor.  Alternatively, we can view the state of a processor

as given by the class in which the onc customer is in. (There can ouly be one customer per pro-

) cessor since we arc modeling the Multibus at the memory access level and processors are single

-

tasking - i.c. a processor is idle while it has a Multibus memory access pending or in progress.)

Thus if the states of two pracessors are dependent, then some of the respective classes of the pro-

cessors arc dependent - i.c. the present class of the customer for one processor may determine the
r present or future class of the customer for another processor. But a product form solution is not
q guarantecd if the class of one customer depends on the class of another since the routing of custo-
b . : , .
) mers is now cffectively dependent on the state of the queucing network. (Walrand's proof [W1]
Y t Upon taking the limit A7 =»0. cquation 2.26 becomes a set of Volterra integral equations of the second kind NCRY)
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of the product form for networks of quasi-reversible qucues requires that the routing be indepen-
dent of everything clsc.) For two processors we can attempt to circumvent the ditticulty imposed
by dependent classes by introducing "superclasses™ to represent all possible pairs (C;.C;) where C;
denotes a customer class for processor ¢. (This can be genceralized for more than two processors.)
A change in class at processor / then forces a change in the superclass which also forces a change
in class at process j. A product form solution can be developed with respect to the superclasscs.
Howcver, a customer in a superclass can only have onc service time distribution at cach qucuec.
Yet a customer in a superclass represents two customers of classes (; and C; respectively from
different processors with possibly vastly different service times at queucs. ‘Therefore a quecucing
nctwork model with supciclasses is not representative of the original queucing network model
unless the classes (; and (' corresponding to cach superclass have the same service time distribu-
tion at cach queuce for the two different processors. And if this is the case, the processors are not
dependent. ‘Thus we cannot guarantee that a qucucing network model for dependent processors

pussesses a product form solution and represents the operation of the processors.,

The above rcasoning implics that we cannot model synchronization and mutual cxclusion,
two principal forms of dependency between processors, with queucing networks and expect pro-
duct form solutions. In addition, it is wcl known [S1] that product form solutions cannot be
cxpected for queacing network models involving multiple resource passession. Multiple resource
possession cecurs when a customer at one gucac requires simultancous service at several quengs,
thus "posscssing” the service resources of those qucues. An example of multiple resource posscs-
sion in Concert is a Ringbus memory access. Such an access requires the simultancous posscssion
of the Multibus and Ringbus. Thus a product form solution cannot be cxpected if we model Con-
cert as a queucing ncetwork modcel with a queuc for the Multibus and a queue for the Ringbus.,
'This is onc rcason why we have chosen to decompose Concert into separatc Multibus and Ringbus
modcls and regarded Ringbus memory accesses as just requiring a different service time at the
Multibus qucue.

All the dependencies mentioned above can be handied with sufficiently detailed Markoy
chain modecls. Howcver such modcls suffer from a relatively low level of abstraction: the structure
of the model is vften obscured and onc’s encrgy misdirected by the details of Markov state defini-
tions and transitions. Stochastic Petri Nets (SPNs) [M2] allow modcling at a higher level of
abstraction than with Markov chains and can casily handlc the sort of dependencics mentioned
above., A SPN model is less complex, casicr to construct, and has a greater likelihood of being

correct than an cquivalent Markov chain model.

A Petri Net is a sct P of places, a set I of transitions, a set a of directed arcs from places to

transitions, a set B of dirccted ares from transitions o places, and some initial placement of tokens

in places (calied a marking). Arcs incident on a given transition arc called input.ares and the places
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Multibus Models 129

from which these arcs ecmanate are called input places for that transition. Arcs cmanating from a
given transition arc called output arcs and the places at which these ares terminate are called out-
put places for that transition. A transition is cnabled when there is at lcast onc token in cach of its
input places. After a transition is cnabled, it fires immediately, removing one token from cach of
its input placcs and adding onc token to cach of its output places. (There can be more than one
token at a place.) A simple Petri Net is illustrated in Figurc'2.23. ‘The circles represent places, the
bars represent transitions, and the dots represent tokens. Sce Peterson [P2] for an extensive discus-

sion of Petri Nets and their propertics.

Figure 2.23: A simple Petri net

A Stochastic Petri Net (SPN) is a Petri Net with the following maoditication.  Associated with cach
transition is a random variable which specifies the interval, calied the firing time, between the ena-
bling of that transition and its firing (given that the transition is still cpabled at that time). At the
instant at which a transition fires - and not before - one teken is removed from each of its input
places and onc token is added to cach of its output places. Thus the firing of onc transiticn may
causc the disabling of another transition. 'The probability distribution of the firing time is given
and possibly diffcrent for cach transition. (Pctri Nets can also be made stochastic by incorporating
probabilistic service times at cach place.) With appropriate probability distributions for the transi-
tions Ty, Ty, T3, and T4, Figurc 2.23 represents a SPN model of a two processor Multibus system.
(T} represents the processing time of processor 1, Ty represents the access time of processor 2, Ty
represents the processing time of processor 2, and 7'y represents the access time of processor 2.)
More compicx SPN models of processors can be developed easily, Performance measures, similar
to those derived with our otiwer inodeling techniquies, can be derived from a SPN. Molloy [M2] has
shown that SPNs with cxponential firing time distributions arc isomorphic to one dimensional
Markov chains and thus the performance measurcs of interest for such SPNs can be determined
by their cquivalent Markov chains. However, with Molloy's technigue relatively small SPNs result
in large Markov chains. Such state space cxplosion makes Molloy's technique unattractive for
determining the performance measures of larger SPNs, Wiley {W 3] has developed techniques that

arc more cfficient and more general.
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130 Multibus Models

2.11 Conclusions

1. ‘The general behaviour of the mean waiting time per request is similar to that depicted
in Figure 2.3: the position of the knee and the asymiptotic slope depend on 7, the mean process-
ing time; f,yp. the mecan Multibus access time; 7. the mcan recovery time: /g, the mean
Ringbus access time: B, the probability of a long word access; and ¥, the probability of a Ringbus
access., ‘The cxact shape of the waiting time per request versus number of processors curve
depends on the probability distributions for the processing, recovery, and access times. Generally,
the more “deterministic™ these distributions are - i.c. the smaller the variance of the associated
random variables - the shallower the knee is. In fact, the mcan waiting time per request with
deterministic processing, recovery, and access times provides a lower bound on the mean waiting
time per request.

2. ‘I'he mean waiting time per request can be more sensitive to the paraincters g and ¢
than to the probability distributions for the processing, recovery, and access times. In the cases that
we simulated (in section 2.8.1.4), we found that the mean waiting time with various probability dis-
tributions was fairly close to that obtained with exponential probability distributions, "This suggests
that future cffort he spent determining appropriate values or ranges of values tor the parameters
B and ¢ and assessing the adequacy of our simple processor model.

3. “the assaptions of identical processors and a simple processor model can be removed,
as discussed in section 2,10, by expanding our basic qucucing network approach. The assumption
“of time independent behaviour can also be removed, provided the time dependent behaviour can
be rcasonabiy approximated by time picce-wise independent behaviour, by expanding the queue-
ing network apnroach. ‘This approach is trivial in the special case when the overall model can be
decomposed into independent submodels for cach time scale. Otherwisc. this approach is very
complicated and probably unrcasonably difficult for all but simple models. The assumption of
indcpendent processors is the most difficult to remove. In fact, it cannot be removed by any
expansion of our qucucing network approach (unless one is willing to sacrifice tractability and
consider networks without a product form solution). As discussed in section 2.10.4, the behaviour
of the Multibus with dependent processors can be modeled with low level Markov ¢chain models,

oi more preferably, by higher level models such as Stochastic Petri Nets.
4. The performance of the Multibus can be improved by the following:

i) reduce the frequency of long word and Ringbus accesses. Ringbus accesses are especially
detrimental to performance because of their extremely long duration, during which all Mul-
tibus traffic is blocked. In the actual Concert system, the minimum duration of a Ringbus
access is 2.0Cusce and the maximum duration is 7X(10X0.200usce) (the maximuin duration

tor which the reouired segments can be allocated to other requests) + 2.70usec =

16.70pscc (asswining ro test and st nstructiens). Most Ringbus accesses will have a
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Multibus Modecls 131

duration somewhere between these two extremes, depending on the processing time, 8, and
¥.
‘I wo ways to avoid blocking Multibus traffic when a Ringbus access occurs are to:

’ a) replace the Multibus by two or more parallel buses, or perhaps just add a privatc bus

for Ringbus accesses, and

b) divide the memory transaction protocol into a memory operation component and an

acknowledgment component that occur at scparate times between which control of the

\Sﬁ'ﬁ'\v

Multibus may be relinquished to other memory transactions.

:

Both of these options arc costly, although (a) is probably less costly.

5 58

ii) decrcase the ovérhead time on non-local memory accesses. Each non-local memory access

5
G

experiences 100 o 200nsece of delay duc to the Multibus arbiter and substantial delays in

i

asscrting the BREQ* (Multibus request) signal upon detecting a non-local memory access

¥

and in asscrting the address and control sighals once the BPRN* (Multibus grant) signal is

%
asscrted. *:;f_':
Nt
o
iii)  reduce the Ringbus access time. N
LN
N
LAY
2.12 Future Work Required
.~
1. Evaluate the single processor equivalent model and the Multibus models. Derive jt-:\
appropriate values for the processor model parameters from real programs and compare the per- :.'
. . . .x_r\
tormance predicted by e Multibus models with the actual performance. :

Ali [Al] has performed some work in this direction. He found cxcellent agreement between

Y3
L)

predicted and actual performance of the simple Multibus (no long word or Ringbus accesses) for

some artificial programs cmulating the simple processor model. For the "real” programs which Ali

considered, he found time dependent behaviour to be very important, suggesting that stationary

modetls are inadequatc.
2. Improve the processor and Multibus modecls and develop new onces.

The existing models can be improved to some degree as discussed in section 2.10. However,
a better dircction in which to proceed is to develop higher level models, such as Stochastic Petri

nct models. Time and processor dependencies are casier to model at higher levels,

P B @ B ——— W A S —————— W = W W w W

AN

~ - - - .
s S T
Lo PR ARAEA S R S R AR L N N




Foa® RE R CAN GAW Sy PV 1 T NI N Ea AP NS A, G
N M= A A LIS NSNS TN N TS R,
0 ABAENA WEBTTFFIXA SIS GRS SAIIINNA IO S B

132




l.i—l B G O T S

r

133

Chapter 3

The Ringbus Model

3.1 Introduction

In this chapter we study the Ringbus subsystem. As discussed in scction 1.3.5. we replace
cach Multibus by a single processor cquivalent model. We assume that cach Multibus, and thus
cach single processor egnivalent modcl, is identical in all respects. We also assume that the
Ringbus is symmetrical with respeet to cach Multibus. We make these assumptions so that we can
use the abundani syminctry that they imply to simplify considerably the wnalysis of the Ringbus
and the integration f the Multibus and Ringbus models. The treaument in this chapter can be
extended casily formally Gilthough not so casily practicatly) to deal with situations in which these
assumptions arc not valid. We assume an exponcntial distribution for the processing time distribu-
tion of cach single processor equivalent. The reason for this is again to case analysis. We make no
assumptions at this point about the access time distribution: indeed, this distribution is onc of the
factors for study in this chapter.

The focus of this chapter is the optimum performance of the Ringbus. ‘There are three rea-
sons for this emphasis on the optimum performance, First, the Ringbus is @ novel interconnection
scheme which has not been studied previously (as far as we know). Thus, knowing the optimum
perforinance of the Ringbus satisfies a natural curiosity. Sccond, the theorctical maximum
improvement in performance of any particular Ringbus design (including the design utilized in
Concert) can be determined from the optimum performance of the Ringbus. 'T'his theoretical per-
formance improvement is uscful in cvaiuating Ringbus designs. Third, knowledge of the optimum
performance of the Ringbus allows the Ringbus to be compared with other interconnection
schemes ip terms of the optimum performance. Since the Ringbus is a novel interconnection, the

optimum  perfornance of the Ringhus s important in establishing the merit of Ringbus-like

schemes with other ingreonnection cchemes.
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134 ' Ringhus Modecl

To avoid getting overwhelmed by details or trapped by the small and relitively unimportant
differences between various Ringbus designs, we take an abstract view of the Ringbus. This
abstract view is as follows. The Ringbus and Ringbus arbiter operate synchronously with an arbiter
clock of period ¢. Requests for the interconnection of source and destination slices arrive from the
Multibuscs (or in this casc the single equivalent processor models of the Multibus) asynchronously
with respeet to the arbiter clock. On cach rising clock cdge, the arbiter examines all pending
requests and then instantancously decides which requests shoutd be granted and how the requests
should be granted. "This decision is implemented immediately so that there is zero delay from the
rising edge of the arbiter clock to the time that a segment allocated to a request is used. Once
granted. a request lasts exactly some integral number of arbiter clock periods. We assume, without
lnss of generality, that the duration of a grant (which is what we call a granted request) is encoded
in its request rather than determined by the number of clock periods before the request is
removed (as it is in the Concert sy:s'lcm).’r Requests remain pending until they are eventually
granted. ‘The Ringbus itself we consider o be just a ring of bus segments under the control of a
central arbiter.

The abstract view of the Ringbus given above is really a set of simplifying assumptions. We
list the most important of these assumptions below,

1) We ignore the delays of the RIB circuitry, including the delay to mitigale metastability when
latching the asynchronodis request signals from the Multibus.
2} We assume zero arbitration time and zero delay in connecting the bus segments of the

Ringbus.

J)  We assume grant durations of an intcgral number of arbiter clock periods.
4)  We assume that the minimum time between the termination of a grant of some slice and the
next nonnull request from that slice is zcro.

In addition, we assume there are no global register accesses.

We term the abstract view of the Ringbus summarized by the above assumptions the isoiated
Ringbus modcl. In scction 3.9 we discuss the differences between the eavironment of the isolated
Ringbus model (created by these assumptions) and the eavironment of the Ringbus in the actual
Concert system. We also consider the cffects these differences have on the performance of the

Ringbus. ‘The Multibus-Ringbus interaction, which is simplificd by assumptions 1 and 4 above, is

¥ Since there ray he sero tie between the termination of & grant and the next nonnull request from a slice in
our abstract Ringbus, the arbuer cannot unambiguously diffeientiate between a continuing giant and a new
nonnull request of the same type if the duration of a request is determined by the anterval until the request is
removed. In the Concert system there is .t east one clock period of dead time between suceessive nounull re-
quests from the same slice io prevent this ambiguity.
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Ringbus Modcl 135

discussed in detail in section 3.9.1 and in section 3.3.2 of Appendix A for the actual Concert sys-
tem. ‘The Multibus- Ringbus interaction is complicated, detailed, and very dependent on the imple-

mentation. ‘This is the reason that we simplificd the interaction in our abstract view.,

We interpret the Ringbus in a broad sense. We define the Ringbus to be a ring of indepen-
dent bus segments in which adjacent bus segments may be connected to form longer buscs. Asso-
ciated with cach bus scgment intcrconnection point is a slice which is connected to the scgments
via an access path. All Ringbus accesses originale and terminate at slices. ‘The interconnection of
the bus segments occurs in real time under the control of a central arbiter in response to requests
originating from slices for paths to other slices. We assume that the arbiter operates in discrete

time (although it nced not in all cascs).

Different Ringbus designs arc distinguished by 1) the numbcer of bus segments (which is
cqual to the number of slices), 2) the access paths between the slices and bus segments, and J) the
arbitration algorithm. In this chapter we only consider Ringbus designs with an cven number of
slices. In addition, we only consider two different types of access paths: asymmetrical and sym-
metrical. ‘T'he Ringbus design utilized in Concert has asymmctrical access paths (as discussed in
section 1.2.2.) [Sce also FFigure 3.1.] Hercaller we call this particular Ringbus design - minus the
arbitration algonithm - the Asymmetric Ringbus. These asynunetrical access paths impose unneces-
sary perfortnance limitation. As discussed in section [.2.2, counterclockwise accesses on the Asym-
metric Ringbus require two segments in addition to the scgments between the source and destina-
tion slices. Symmaetrical access paths remove this performance limitation, A Symmetric Ringbus is a
Asymmetric Ringbus with symmietrical access paihs instead of asymmetrical access paths. Figure
3.1 illustrates the access paths of the Asymmetric Ringbus and the Symmetric Ringbus. We define
the Concert Ringbus to be the Ringbus and arbitration algorithm actually used in the Concert sys-
tem. ‘That is, the Concert Ringbus is a Asymmetric Ringbus with a rotating priority arbitration

algorilhmT (as discussed in section 1.2.3).

+ Andcrson [A2] actually calls this arbatration algorithm a rotating priority. full arbitration arbttration alconthm
to distinguish it from others he considered durning the desien of Concert We will call it simply a rotating preenty
arbitraiion algorithm.
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136 Ringbus Mode)

counterclock wise
Ringbus scgment

Multibus

m Multibus

clockwise
Ringbus scgment

Asymmetrical access paths Symmetrical access paths

Figure 3.1: Access paths of Asymmetric Ringbus and Symmctric Ringbus

As stated carlier, our chier interest is the optimum performance of the Ringbus. Since the
Symmectric Ringbus is a superset of the Asymenetric Ringbus, the optimum performance of the
Symmctric Ringbus is greater than or equal to that of the Asyminctric Ringbus. For this rcason,
we concentrate on the optimum performance of the Symmetric Ringbus in this chapter. ‘The Sym-
inctric Ringbus is also casier to analyze since it has more symmetry. In the course of determining
the optimum performance we also determine the optimal arbitration algorithm, which is of interest
in designing good sub-optimal algorithms.

We bricfly consider the optimwn performance of the Asymmetric Ringbus for a small
number of slices. In addition, we determine the performance of the Concert Ringbus and the per-
formance of the Syinmetric Ringbus with the rotating priority arbitration algorithm. A trivial
modification to the arbiter in the actual Concert system (which we call the Concert Ringbus
arbiter) allows this algorithm to operate with symmetrical access paths. (The additional complexity
and circuitry required in the RIB might not be judged as trivial.) The problem from the point of
view of the arbiter with symmictrical access paths is that conflicts may now occur at the request

destination as well as at the Ringbus segments. Thuy the arbiter must arbitrate the destinations as

well as the Ringbus scgments,

To include this feature, the arbiter just needs to arbitrate for cach Ringbus resource - seg-
ment or desdnation - in the same manner in which the arbitration proceeded for the segments in
the Concert Ringbus arbiter (sce section 121, The first siep is to determine all the Ringbus

resourees required for cach regnest. As in the Coneert Ringbus arhiter, requests would be granted
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Ringbus Model 137

only in the direction requiring the smallest number of segments, with tics being broken in prefer-
ence of the clockwise direction. Finally, a request would be granted when it has been granted all
the resources that it requires.

A logic diagram for this new arbiter is shown in Figure 3.2. 'The part count has doubled
because we now have double the number of Ringbus resources to arbitrate. However, the size of
the parts required is the same. ‘The number of parts is proportional to the number of resources

and the sizc of the parts is exponential to the number of sources.

‘This new arbiter design, which cvidently was overlooked during the design of the Concert
system, would result in superior or equivalent performance in all cases. (It certainly cannot result

in inferior performance since its functionality is a superset of the other's.)

In scction 3.2 we formulate the Ringbus as a discrete time probabilistic model. Time is
quantized into discrete intervals, called rounds, which arc equal 0 and synchronous with the
arbiter clock period. ‘The performance metric of the Ringbus maodel is the throughput in terms of
the average number of grants completed per round. ‘The optimum performance of the Ringbus

model is formulated as a Markovian decision problem.

fn sections 3.3 and 3.4 we investigate the optimal arbiter for a Ringbus ot four slices. Scction
3.3 covers grant durations of onc round and scction 3.4 covers grant durations greater than one
round for two special cases. ‘These special cases are deterministic grant dutations and gecometrically

distributed grant durations.

In section 3.5 we investigate the optimal arbiter for a Ringbus of six slices and develop a
number of bounds on the optimum throughput.

Scctions 3.6 and 3.7 consider the Ringbus with cight and more slices. Since the computa-
tional requirements for these cases cxceeds the available resources, we just discuss the general
characteristics of the optimum throughput in scction 3.6 and the optimum throughput for some
special cases in section 3.7.

In scction 3.8, we compare the performance of the optimum arbiter algorithms and the rotat-

ing priority arbiter algorithm for (he Concert and Symmetric Ringbuses.

Finally, in scction 3.9 we discuss some of the differences between our abstract Ringbus
model and the Ringbus utilized in Concert. We consider the effect that these differences have on

performance. The last part of this section develops the hooks for the integration of the isolated

Ringbus model with the Multibus model.
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Figure 3.2: Logic diagram of Symmetric Ringbus arbiter
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Ringhus Model 139

3.2 Ringbus Model Formulation

I'rom the single processor equivalent model of the Multibus, we know that if a Ringbus
access oceurs in some round then wath probability p,-’"”""" ws destination is ¢ slices around the
Ringbus from the source slice (i = ~(S/2-1), -+, =1, 1,2, -+, 872). Negative vatues of i
indicate the counterclockwise direction around the Ringbus and positive values indicate the clock-
wisc direction. Note that this probability distribution of requests is independent of the source slice.
‘This is a consequence of our assumption that all Multibus models, and hence all the single proces:
sor cquivalent model of the Multibus, arc identical. Since we assumed an cxponential distribution
for the processing time distribution of the single processor equivalent model of the Multibus, the
probability that the next request at a slice arrives in the i™ round after the end of the previous
grant at that slice is a constant independent of 4. In other words, the number of rounds between
the end of a grant and the next request at that same slice (i.c. the discretized processing time of
the single cquivalent processor model) is a geometric random variable. Because of the memoryless
property of a geometric random variable, we can exclude from the state description any informa-
tion on the number of rounds waited so far for a request to arrive at a slice. ‘Thus the assumption
of an exponential distribution for the processing time of the single processor equivalent maodel
simplifics not only the integration of the Multibus and Ringbus models but also the analysis of the
Ringbus model.

In each round the arbiter must decide which subsct of the current requests to grant based on
past and present information only. The arbiter is thus a causal, discrete time decision maker, Deci-
sions are subject o the following constraints:

1. All segments required by a request must be connected as required before or at the same time
that the request is granted.

2. Each segment is used for no more than one grant in a round.

3. All segments required by a grant remain connected and allocated for the exclusive usc of that

grant for the entire duration of the grant.

4.  Every pending request eventually gets granted i.c. cach request has a bounded waiting time,
(lhis requires a bounded Ringbus access time. [n the Concert system cach Ringbus access
represents a single memory transaction - read, write, or read-modify-write - and the duration

of cach such transaction is bounded by the Ringbus timecout pcriod.T)

Without loss of gencerality, we consider the cegments referred to in Constraint 1 to be con-

nected at the time that a request is granted. ‘This is in fact how the Ringbus operates in Concert.

f If the addressed menory Incation at the destination RIB does not respond with an acknowledgment within a
given tine interval, the destination I3 sends a signal to the source RIBY which avoras the Rinebus aceess
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Ringhus Model

We make the following three simplifications in our formulation of the Ringhus model:

1.

i)

L N U AP s
. s,\..-.;.{ -

We exclude from the state description any information on the duration that i request waits
before being granted. This waiting time information is irrclevant when
in modcling the performance of the only non-optimal arbiter algorithm considered in this

chapter - the rotating priority arbiter algorithm, and
determining the optimum perfonmance of the Ringbus without Constraint 4.

The waiting time information is irrelevant in casc i) because the rotating priority algorithm
does not utilize this information, We have not presented sufticient machinery at this point to
show that the request waiting time information is irrelevant in casce ii). In fact, we we have not
cven completed the formulation of the Ringbus model. ‘Therefore we relegate a precise state-
ment and proof of the irrelevance of this history information, which we call Theorem 3.1, to
Appendix B and encourage the reader o examine this thecorem after completing subscction

321,

We ignore Constraint 4 when pursuing the optimum performance of the Ringbus. Our rea-
sons arc as follows, Iirst, by ignoring Constraint 4, request waiting time information may be
excluded from the state description (as justificd by Thcorem 3.1), thus permitting the analysis
to be greatly simpliticd. Sccond. ignoring Constraint 4 removes the effect of the maximum
permissible waiting time on the the optimum performance so that the optinunn performance
obtained is the inherent optimum performance of the Ringbus architecture. If the maximum
permissibie waiting time is sufficiently large, Constraint 4 has negligible cffcet. If it is suffi-
ciently small (such as cqual to its minimum valuc of (8 — 1)) where S is the number of slices
and D is the maximum duration of an access), Coastraint 4 has an cnormous cffect on the
performance. In fact, with a maximum permissible waiting time of (5 — 1), the arbiter algo-
rithm must impose some sort of strict priority ordering on requests. ‘Third, any arbiter algo-
rithm can casily be modified to cnsure bounded waiting times. Such a modification may, of
course, result in a degradation of performance dependent on the maximum permissible wait-
ing time.

Note that assuming & large cnough maximum permissible waiting time is essentially equivalent
to ignoring Constraint 4. We prefer to think of ignoring Constraint 4 as assuming such a large

cnough maximum waiting time.
We limit the duration of a grant to have one of the following two simple forms;:
i) aconstant duration of o rounds where  --1,2.3, or 4,

it) a geometric probability distribution i.c. the duration is  rounds where o is a random

variable with a (mcimoryiess) geomnctric distribution.
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3.2.1 Markovian Decision Formulation

Lct the state of the Ringbus (ignoring request waiting times as discussed previously) at the

beginning of cach round be described by
(ridyirady, <« -irpdys - - - irg dy)

where 7; denotes the destination of the request at slice i and 4; indicates the duration for which

the request has been granted so far.

We cxpress the destination of a request as the number of slices the destination slice is
around the Ringbus relative to the source slice, We use positive numbers to indicate the clockwise
direction from the source and negative numbers to indicate the counterclockwise direction from
the source. Thus r; =2 indicates # request o the slice two slices along the Ringbus in the clockwise
direction from the source slice, and r; = -2 indicates a request to the slice two slices along the

Ringbus in the counterclockwise dircetion from the source slice.

We do not use r; =0 to indicate a request from slice 7 to slice 7. We assumned carlier that
there are no global register accesses, hence such requests do not occur, Instead. we use r; = 0 to
indicate that slice 7 is not requesting a Ringbus destination. We call this absence of a request a null
request. ‘The arbiter treats a null request just like a genuine request except that 1) a null requcst is
always granted immediately when it occurs (since there are no resources Lo be granted foi a null
request) and 2) a null request always has a duration of only onc round. Any two consccutive
genuine requests at a slice are separated by some number (possibly zero) of aull requests propor-

tional to the processing dime between those genuine requests.

A request from slice ¢ is pending (i.c. not yet granted) if and only if o, -=0. The duration d; is
increased by onc for cach round that the request remains granted. We cxpress the destination of
any pending request in terms of the smallest number of slices - cither clockwise or counterclock-
wisc direction - the destination slice is relative to the source slice. A tie in the number of slices in
cach dircction is broken in favour of the clockwise dircction. Thus for any pending request if the

source slice is ¢ and the destination slice is j#i, then

X, x<S/2
=1y -8 .8/72<x

where x =(j—i) mod S.

A request may be granted in cither clockwise or counterclockwise direction, We express the
destination of a request once the vequest is granted in terms of the direction in which the request

was granted. Thus if a requesi is granted from slice 7 to slice j#i,

x . ifgranted in clockwise direction

r=s . e . . . .
e -8 il granted in counterclockwise direction
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where x —(j—i)y mod §.

Therefore once a request is granted, we use r; to indicate which scgments have been allo-
cated to that request. For the Symmetrical Ringbus, the mapping from #; to the segments is espe-
cially casy: | ;] indicates the number of scgments allocated beginning from slice ¢ and the sign of
r; indicates the direction around the Ringbus in which these segments arc allocated. For the
Asymmetric Ringbus, the mapping is the same cxcept that two additional segments arc required
for requests granted in the counterclockwise direction: the segment most immediately clockwise of
the source slice and the segment most immediately counterclockwise of the destination slice i.
(Thus there is only onc direction Lo grant requests from a slice to its immediate clockwise neigh-

bour i.c. from slice 7 to slice (i mod S)+1.)

An example of the definition of r; is illustrated in Figure 3.3.

. 1
. \ .
* ¢’} - requests ungranted @ ——> ]
. . .
6
. \o
r;:_lr;'_-‘ -3 rl=2.r6.~_ -1
Symmetric Ringbus Concert Ringbus

)
3 = requests granted W — > K ® “I'wo additional
; segnments required
6* — \q A

Figure 3.3: Examplcs of r;

In soime cases the state description simplifics. If all grants have a constant duration of one
round, then all the d; can be climinated from the state description since & new request - cither
genuine or null - always replaces a request once it has been granted. If all grants of genuine
requests have a duration with a geometric disiribution, then we only need a binary variable for ;.
As before. o; indicates a pending request. d; -1 indicates that a requoest has been granted tor one
or more rounds. The exact duration of the grant in this case is irrclesant sinee ihe geometric distri-

bution of the duration is memoryless (i.e. independent of how long the request has been granted
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so far).

When a grant at a slice terminates (after one round for a null request and one or more
ronnds for a nonnull request), a new request arrives at that slice at the beginning of the following
round. We denote by p; the probability that a new request is for a destination ¢ slices along the
Ringbus from the source slice, i=—(S/2-1), -+, =1, 1, 2, ---, 872, As belore, negative
values of i indicate the counterclockwise direction around the Ringbus from the source and posi-

tive values of ¢ indicatc the clockwise dircction. We denote by pg the probability that a new
M Begv
,.

request is a null request. ‘Thus p; =l—'~~— for i#0.
—Po

Given some currcﬁt state. the next state of the Ringbus depends on the present state, the
decisions made in the brcscnt state, and the new requests that arrive in the present round. ‘The
states of the Ringbus thus comprise a discrete time Markov chain, ‘The state transition probabili-
tics depend on the state and the decision made in that state. Note that going from the present
statc Lo the next state has two parts - a deterministic part and a random part. ‘The deterministic
part is determined by the decision in the present state: any requests ungranted in the present state
or corresponding to grants still in progress in the present state must appear in the next state. The
random part is determined by the new requests which arrive to replace the grants which ter-

minated in the present state.

For convenience, we number the states with consecutive integers starting from 1 and we
number the possible decisions in cach state with consccutive integers starting from 1. We denote
the onc-step probabitity from state /i to stale j by /),-‘f where o indicates the decision made in state
i. Denote the decision made in state ¢ by (i) and let D={d(1).d(2).d(3). - - - ] We call the deci-
sion vector 1) a policy: it specifies the decision made in cach state, and thus completely specifics
the operation of the arbiter. We consider only stationary policics, i.c. policics which arc indepen-
dent of time. [n addition, we consider only policics in which there is at least onc new grant or
grant in progress in cach state cxcept for the state with 7, =0 for all i. (A new grant is a grant
which has a duration of zero so far; it has been granted for the first time in that state. A grant in
progress is a grant which has a duration so far of onc or more rounds: it has been granted for the
first tim¢ in  somc  previous  state.)  We  assume  that  p;  is nonzero  for o all
f=—=(5/2-1), - =101.---.872. 'T'he above restriction on admissible policies and this

assumption of nonzero probabilitics ensurces the following:

1)  Allstates in the Markov chain communicatce - i.c. the # step transition probability from state 7
to statc j is nonzero for all i and j and some n2>1. The Markov chain thus forms a single

closed class.

2) T'he Markov chain is periodic.
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These two conditions cnsure that the finite Markov chain has a stationary  steady-state
(Theorem 2 p.29 of Kicinrock [K3]). Denote the steady-state probability of being in statc 7 under

policy D by # . The w ? arc given by

)= 27}) ,,;.’l(i) and  Dul= Q.0
i

J

We call the number of new grants in state ¢ under decision d(i), the reward, which we

N
dcnote by q,-dm. ‘The average number of new grants per round undcr policy D is "‘»
gV i G.2) “é
i -
wirere D =[d(1).d(2). - - - ]. 'The average number of new grants per round is the throughput of the :‘.:_
Ringbus. Our objective is to find the maximum throughput, g, and the corresponding paolicy 1. ",‘,:j,'
subject to given constraints on the decisions and for given probabilitics. ‘}E:
‘The constraints on the decisions fall into three classes which we term logical, topological, and ;.:
theoretical. 'The logical constraints, which we discussed at the beginning of scction 3.2, impose cer- s
tain basic conditions on the Ringbus scgments independent of the arbiter algorithm and Ringbus '::-,
deosign. ‘The topaological constraints impose the mapping froin a request to the segments required :':
for that request. Differcnt Ringbus topologics, and in particular different access paths, can be :’\:
cxpressed in terms of different request w scgment mappings. The Asymitictiic Ringbus and the .;:;::
Synmunctric Ringbus differ only in their mapping of counerclockwise requests to scgments: the ,.;::"
Asvimmctric Ringbus reguires two more segiments than the Symmctric Ringbus. ‘I'he theoretical .;E
constraints cnsure simooth application of the Markovian decision iormulation. The limitation to : .
stationary policies is of no concern since any real arbiter implementation would likely operate :.-’5::
indcpendent of time anyway. Likcwise. the limitation to policics with at lcast one grant in cvery ,:-;::
state (except for the state with 7, =-0 for all /) is of no concern since any optimal arbiter would ::'.:-E:'.
obviously have at least one grant per round wherever possible. Without this limitation. the Marko- T y
vian dccision problem might have multiple chains and transient states, which complicate the *'
analysis. :_
.h. -
The optimal throughput and corresponding policy of the Markovian decision madel of the NN
Ringbus can be solved using Howard's policy-iteration method [H4]. We develop some prelim-
inary results following Howard {H4]. for future use and then we present Howard's algorithm., .
Supposc we ran our Markov chain nuxlel of the Ringbus with rewards for # rounds under r
some policy 1). l.ct V,"(n) denote the total expected reward (ic. total number of new grants) .’
accumulated over the # rounds that we start in state 1. l-',”(u) obeys the recurrence relation: -
NN
;,.In(”) gy, 2“”&/(:”,’"(" Ny, €L >l (.3) \\l
’ e
SR
Z
‘1’
O ' / . A ~ A N A AL ‘.-‘.-‘.-‘:-
" N AN N A,
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where / is the set of all states. 1loward has shown that V,-"( n) has the asymptotic form

V,~"(nhng"+r,"’. as n—00 3.4)

v,~" represents the value of starting in state i: v,-"— j", i#j, is the difference in the long run

expected reward duc to starting in state ¢ rather than state j. Substituting cquation 3.4 into cqua-
tion 3.3, we obiain
g+ v =gl 4 3 pdiy P, 3.5
J
If there are N states, cquation 3.5 represents N simultancous cquations in N + 1 unknowns.
We rectify this situation by subtracting Vl" from both sides of cquation 3.5 and regarding g" and

D_,l

the v; ) as the unknowns:

- Py=af 0+ Zp 0P - o P). (36)
J

n

We call these v, —v|" the relative valucs. We can solve cquation 3.6 for g" and the relative

vatues. Note that we now have an equivalent form for g

g"=qfM + Jp{OP - vP) (el
J

Howard's policy iteration algorithin is the following:

1)  Start with some policy 1).

2)  Value Determination: Usc the p,‘}(") and ¢ for a given policy D to solve
gl +OP = vP )=+ 2pd s~ ) (3.8)
i
for g and the relative values v,-" - 1".

D

3) Policy Improvement: For cach state 7, usc the relative values v, — v|" from the previous pol-

icy and dcterminc the value or values of & which satisfy:

mI((IX( a*+ 21’5( v,-"— 1) 3.9
J

If a unique value of & satisfics cquation 3.9 then set d (/)= k. If two or more valucs of k

satisty cquation 3.9 then cither one such value of & is d(i) or no such value of k is d(i). In

L4 . . . L4 . - .
the former casc, sct (i) - d (i) and in the latter case set d (/) equal to an arbitrarily chosen
. . . ye e . .« .

valuc of & satisfying cquation 3.9. The new decision in state 7 is d (7).

N
. L . . s LN . . LN .
4) If policy D) is the same as policy D (e, it d (1) =d (i) for all i), then stop: D is the eptimal
. ° . . \ . L .

policy and g” 15 the optimal average reward per round. 1 policy B is not the same as policy
r
:
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L ]
D, then set D=D" and go to 2.
With precise arithinetic, g increases monotomcally on each iteration and Howard's algo-
rithm tenninates in a finite number of iterations [H4]. However. truncation crrors can cause inde-

finite cycling of the algorithm in a machine implementation.
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Ringbus Model 147
3.3 Optimal Arbiter for Vour Slices and Grant Duration of One Round
In this section we investigate the optimal arbiter for the Symmettical Ringbus with four slices
and a grant duraiion of one round. In this case the state description is
(rirariry)
where r; = =1, 0, 1, 0r 2: i =1, 2, 3, 4. Wc assume that the request probabilitics are symmetrical
a-
with respect to the direction around the Ringbus, i.c. py=p _i. ‘There are 256 states in this state “ -
description. However, this number can be reduced by taking advantage of the abundant sym- '
metry present. ‘There are two types of symmetry present, which we term rotational and flip. These )
) . . . LE
symmetry types arc most convenicntly viewed geometrically. Imagine the Ringbus represented by )
. . . '
four nodes (cach represcunting a slice) connected by arcs (cach represeating & bus secgment) to form e
a planar diamond shape which has three axes of symmetry: one perpendicular to the plane and
two in the planc of the diamond. Rotational symmetry refers to the syminetry about the axis per- ::-:
s
. . e -
pendicular to the plane of the Ringbus. Flip symmetry refers (o the symmetry about enc of the
axes in the plane of the Ringbus. Because of the rotational symmetry it docs not matter which axis '_:'-.
in the planc is chosen for the flip symmetry axis. An example of cach symmetry type is illustrated -::
in ligurc 3.4.
rotate Mip e
about -~ about N
axis . axis .-:._-f'
l . l+ 01 '."".1
SN
! o
/ | SN
40 ° 2 40 °2 40 ' L) 40 2
» / \: / R
!
° ° ° e
i 3 3 3! ]
' ©00.- 1.0 (-1000) (00,10 0.0.-1.0) oy
b -5
p (i) Rotational symmetry (b) Plip symincetry At
- -\‘-
4 ‘.":.‘\.
p RN
! RSAN
Figure 3.4: Rotational and flip symmectry e
e
{ Since the request probabitities are identical for cach slice and symincetrical with respect to the '.;-:"_
!\..
dircction around the Ringbus, by ecmploying both votational and flip ssmmetry all cight states s
(£1.0,0,0). (0,21,0.0), (0.0,£1.0). (0.0.0.£1) can be «een to be cquivalent o (- 1.0.0.0). Thus we ~ s
. , , _
N can replice these cight states by a single cquivalent state ¢ 1.0.0.0). By oxtracting all available oy
'y balS
. symmetry, we eventuadly end up with a total of 43 states, These states are hsted i ‘Table 31 along L
X 2N
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148 _ Ringbus Model Ly
with the number of original states which reduced to cach cquivalent state. R
! State Number 1 Lquivalent State | Reduction lactor :
| 0000 1 -
2 1000 8 &
3 2000 4 .
4 -1 00 8 o
5 -10-10 4 ) A
6 1010 4 s
7 1020 8 =
8 slroo0 4 by
9 ‘1200 8 o
10 1-1 00 4 o~
11 1200 8 :','._
12 2200 4 Il
13 2020 2 T
14 A-1-1 0 8 )
15 A 10 8 N
16 -1-120 8 NN
4 17 1110 8 o
18 1210 8 NN
19 1120 8 o
) 20 1210 4 .
{ 21 ‘1220 8 o
\ Py} 1-1-1 0 8 e,
{ 23 1120 8 Ao
2 12-10 4 :5‘2
25 1-120 8 ks
‘ % 1220 8 o
: 7 24120 8 D
b % 2220 4 S
{ » SRR 2 e
b 30 1el 8 N
L] Al 2 T8 v
4 R S I I T >
b 3 -1 2 8 .t
4 - - .- - . N
1 121 8 N
35 1122 8 SN
3 S 2 Y
3 112 8 o~
38 4122 4 .
19 12412 4 =
10 1212 4 RGN
41 1221 4 N
4 1222 8 o
a3 2222 | N
4 T,
‘Table 3.1: States Aftcr Symmetry Extraction N OV
. Y,
‘The optimal arbiter problem can be expressed as a Markovian decision problem based on | a"
these 43 states. We number the states as indicated in ‘Table 3.1 and solve this problem using - K .
Howard's algorithm [114]. FFigure 3.5 shows the gain (i.c. the mean number of grants per round) -:_:;
for various values of p and py (pa=1 -2py-p)). '.:-::-
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150 Ringhus Model

Regardless of the probabilitics g+ and ps, the optimum decision rule in all states consists of the

fullowing two steps:

1. Consider only the 1equest subsets for cach stote that have the greatest number of requests.
This amounts to maximizing the immeduue reward in cach state.

2. Beade which of the request subsets with maximum immediate reward to grant.  (This is
triviat if there is only one such subsct.)

For all states cxeept 20, 34, 38, and 40, and rcgardless of the probabilitics py and pj, the
request subset chosen in step 2 of the decision rule is the one that has the most regucests of the
longest length - i.c. of length 2 (where we define fength te be the number of scgments required).

Lo states 20, 34, 38, and 40, the request subsct chosen in step 2 of the decision rule depends
on the probabihtics py and po. States 20, 34, and 40 cach have two request subsets with maximum

immediate rewand as shown in the diagrams in Figure 3.6.
/ [ ] ®
40/ 2 o\ . [ ] [
”\\ : N

°
3
(a) b
State 20 Mavnum reward request subsets
—— /
4 o ? . . . >
~_o [
3
() (b)

State 4

’

T
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(a) (b)

" State 40

IFigure 3.6: Somce possible decisions in states 20, 34, and 40

T'wo scts are associated with cach paossible decision in a statc: a grant sct and a Icftover sct.
lIFor a particular statc and a particular decision, the grant sct consists of all the requests that arc
granted and aull request for cach of the ungranted requests. ‘The leftover set consists of 2l the
requests not granted and null requests for cach of the granted requests. 1For example, il request
subset (a) is granted in state 20 (sec Figure 3.6) then the grant set is (0,0,1.0) and the Icflover sot is
(0.20. 1): if request subscet (b) is granted, the grant set is (0.2,0,0) and the leftover sct is
(0.0,1. - I). Wc can writec R - Gy + 1.4 where R, Gy, and 1y denoie the request, grant, and left-
over sets respectively, + denotes clement-wise addition, and the subscript o indicates that this
decompasition of R depends on the decision,

The Icflover sets associated with request subsets (a) and (b) in Figure 3.6 arc the same for
cach of the states 20, 34, and 40 (using rotational symnictry for state 34). Thus the decisions in
these three states amount to the same decision: should the leftover sct be (a) or (b)? (Sce Iigure
3.7)

“.'w.'-.'\.
| )

LY
MNAL

o/

I efiover sct from

request subset (a)

/ /
AN

I cRover set from

request subset (b)

Figure 3.7: Leftover sets associated with request subscets

() and {b) tor each of the theee states in Figure 3.6
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152 Ringhus Model

Of course the decisions in many other groups of states other than 20, 34, and 40 are related
through their leftover states. The Markovian decision problem can in Gt be tormulated in terms
of Icflover sets rather request scis. Assuming that it lcast one request is granted in every request
scl. the number of states required can be reduced by this alternate forinulation.  However, the
transition probabilities are moie difficult to determine and the problem structure is less intuitive in
this aiternatc formulation. '

State 38 also has two request subsets with maximum immediate reward. ‘These two request

subscets and their associated Ieftover sets are shown in Figure 3.8.

/ | 2
7

State 38 Request subset (a) Request subset (b)
m /
L ] [ ] [ ]
® L
I cflover sct (a) I cfover set (b)

Figure 3.8: Some possible decisions in state 38

Notice the subtle difference between leftover states (a) and (b) in Figure 3.8.
The regions over which reuest subsets (a) and (b) of Figures 3.6 and 3.8 comprise optimal

decisions arc shown in Figure 3.9,
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Figure 3.9: Optimum decision regions
for states 20, 34, 38, and 40

R NAWZS States 20, 34, and 40:

\\ Request subset (a)

/ / Request subset (b)

State 38:

Request subset (a)
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\
To the right of the line delincating request subsct (a) and (b) for states 20, 34, and 40, siep 2 ‘-..:‘
of the decision rule is the same as that mentioned carlier for all the other states: grant the request _
subsct that has the most requests of length 2. In other words, leflover set (b) (of Figure 3.7) is a ﬁt
beuer chuoice than leftover set (a) for py and pj to the right of the line in Figure 3.9. C}.
‘&
"
We now investigate the regions over which request subsets (a) and (b) for states 20, 34, and -{‘-
40 arc optimal (assuming optimal decisions in all other states). Of course the cxact regions over
. . . . . . . - ¢
which cach of these request subscts is optimal can be computed by applying Howard's policy itera- '.,'; d
LYY
tion algorithm. tlowever, the policy iteration yiclds the optimal decision for only a single point :-‘:
L
and thus the extent of the regions must be determined by the behaviour at many sample points. '.‘:;
et
a.
This is. in fact, the manner in which the regions shown in Figure 3.9 were cstablished.  An analyti-
. . . . S
cal form for the boundarics of the regions would be much more uscful, but such a form scems PN
o
intractatle. Instcad, we consider an approximation. '-:-‘:
SN
The basic idea is to approximate the relative value (i.c. v," -v,") of a state 7 by the immedi- ’_:;\
ate reward, q,-‘“"). in that statc. First we number the states as listed in ‘Table 3.1. Since there are '
no genuine requests in suate 1, the only possible decision is to grant all the null requests. ‘The e
- ’l
immediate reward, ¢, is thus zero. ‘The transition probability, p;;. is simply the probability of the ;
requests arriving that constitute state j. For example, if the wansition probability from state 1 to _'.'_:
symmetry state 19 (- 1,120V is pyyg = 8poyp 3,: 3. (Ihere are 8 ways to go from state 1 to the sym- f
o
metry statc (— 1,1.2,0) - this is the reduction aumber listed in Table 3.1). : n
]
Equation 3.7 thus reduces to popy,
Aohg
D 2 D_.b 110 g
g =2 v v (1.10) :
j - |
T
. . . . . . . 5.
(We drop the superscript d(1) on py; since there is only one possibic decision in state 1.) Substi- RSAYS
RAASNE
tuting cquation 3.10 into cquation 3.6 yiclds: :’
YA
l\-
D D ] j D M &
V, ~—VI T:qid(l)" Z(I,Itll(l)_plj)(v] *Vl )' (.‘.ll)
J -~
o
Y
. . . '. f
Now consider l’,”(n) and the recurrence relation expressed by equation 3.3, Let V,“(O) 0 for all .-:a-‘
- -‘
i ‘Ihe difference V,(n) -V (n) is s
il ce Vi'(n) -V i(n) :.}r
D j o 'l { s -
"I’ (n)- Vll)(")"‘ qIJ(I) ; 2(/),1(1)__ /’U)(‘l/{ n, zl)l‘i(”(qil“)+ 21,‘(//(’( )(q/d /)_' Cee gy zp;{(r)qsd(\))» .’::::
k ! ] LAY
J ! ':_\.'_-.
TN
) d d{y) d(i) d 1(k 8
- 4 Pt 2(/’11“)‘ I’Ij)‘l/ U4 ZZ(I’U(' I,|_/),,jk(j)qi( Ve -':-":
J ]k Ia
wha
o' / s
G2 2 p e gt (3.12) A
1ok s el
Y
DA
.':d‘:f:
N,
a"a-‘a‘
N
AN Y
‘e u" ._(\'
T Y ". “.:'-*‘
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Lon_-2 .
f__qj([(l)/ 2 22(/)}}"’"Plj)‘ij(’”)"qf“‘)
m=0 j k

1, j=k
where (pj,‘(m)" is the m step transition probability from state j o state k: q{,!z(O):— 0. j#k'

PRm +1)= 2D Rm). As n—00, ¥y -y P ()= v - v by equation 3.4 and thus
{

o0
W=y =g D D —p ) Depje ()P ) (.13)
m.=0 j k

n

We now have two alternate formualations for the relative values v, -- v|": cquation (3.11)

and equation (3.13). Equation 3.11 provides a way to caleulate the relative values and cquation

113 allows an interpretation of the relative values. We see from equation 3.13 that WM v is the

infinite sum of probabilistically weighted rewards. Rewritten as

00 A o0
Vi“ P g2 oy 2 22/}#‘”(})_/&(;'1)“(1;‘(]“)—- 2 22/),,(;)',-/‘("1)"!{/21“ (314)
m:=0j k m=0j &

our carlicr interpretation of v,-" - v," as the difference in the average total reward starting in state
{ relative to stating in state 1 is obvious. (Equation 3.14 can be gencralized for v,«"-— vj".)
Equation 3.13 suggests that v,~“ - v." can be computed to arbitrary accuracy simply by sum-

ming enough of the terms on the right hand side. Onc way to approximate 1'," Avl". which we

now pursuc, is by the first term of its infinite serics expansion, i.c. v,-"--~ vl')zq,d‘”.

‘This approxi-
matiion has the merit of avoiding any computation with the tansition probabilitics. Of course
some accuracy is lost in this simple approximation.  Hoewever this merit is very important when the
number of states is so large that it is a great deal of work to compute all the transition probabili-
tics. (Such is the casc for six and cight slices as discussed in the sequel.)

In some cases the approximation r,"-r v|"=q,‘“” is exact. Consider those states i in which

all the requests can be granted simultancously without conflict. We call the request sets of such
states immediately grantable and we denote the set of such states by /G It the decision, (i), in
some state F€1G s such that all the requests are granted, then the lettover set tor state 7 s the

same as the Ieftover set for state 1. Now if two states & and [ have the same leftover set, then

d
i

bility distribution of new request arrivals which is the same for both states. Thus if (i) is such

that all requests are granted, then p,‘}('":pl/ for all j. lgquation 311 then implics that

M B

"’:p},l”’ for all j since the next state is entirely determined by the lettover set and the proba-

This previous result can be generalized. Consider any two states @ and / owith deewsions J(7)

and ) such that both states have the same leftover sett Then /)"("' VRO o alt b and
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v," vj"- q,‘“” q,‘"j). This resuft follows from the obvious generalivation of cquation 3.11 to

D ) i () ' Ju d(j D D
- V’I . ‘l‘d(l) qs ), 2‘(”,‘(:), l’jk(”)( L)
k

The determination of all the relative valucs v," - \»l'" and hence solving for g". thus amounts to
determining the difference in relative values of states witn different Ieftover sets. T'his is consistent
with our carlier observation that the Markovian decision problem can be expressed in terms of
leftover scts rather than request scts.

Since the relative value in state 4, vj" - v|". represents the difference in the average total
reward starting in state / relative to that starting in state 1, (which has only null requests), it scems
intuitive that v,” - v," should. never exceed the number of genuine, i.c. non-null, requests in that
state which we denote by ;. We found that indeed r,-" v|" <un; for all states / for every case we
investigated for four (and six) slices. We were unable to establish if this incquality is truc in gen-
cral.

We now return to our approximation v,"— v |"'=q,’“” and the determination of an approxi-
mate analytical expression for the regions corresponding to request subscts (a) and (b) in states 20,
34, and 40 in the four slice, single round grant duration Symmetric Ringbus. Request subsets (a)
and (b) cach grant the maximum number of requests possible in cach of the states 20, 34, and 40.
Thus the choice of request subsct (a) or (b) in these three states does not depend on the immedi-
ate reward: it depends only on the Teflover sets. [For a given policy D, request subsct (a) results in

an improvement in the throughput if

28 v Py> DA - o)
J J

and request subsct (b) results in an improvement if

2[’[}" )( VI“ —y 'I) )< zp,}h )( vj“ —y |l) )
J J

where 7= 20, 34, or 40 and we have cancelled the immediate rewards from hoth sides of the ine-

qualitics. Approximating vj"— v." by q;’

A= S0 - pirgf
i

U) we have:

If A>0 then request subset (a) is best and if A<O then request subsct (b) is best. Since we

alrcady know that the optimal pulicy consists of granting the maximum number of requests in

ciach state, qj’” ) is cqual to the maximum number of simultancously grantable requests in state j.

The leftover sets from request subsets (a) and (b) arce shown below,
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Iigure 3.10: Leftover sets from request subsets (a) and (b) in states 20, 34, and 40

]

Table 3.2 lists the possible next states (without symmetry removed), the immediate reward in cach
state, and the transition probability,

LYy

| Lefover Set () ] T Lehover Set(b) | T
Next State | Immediate Reward | ‘Pransition Probability | Next State | Immediate Reward i;-.-;
1L 2141 3 | p el 1ol 3 s
e | 2 ot | Lo | 2 %
o121 I Y aeb | 2T
a2 2 T T, T R

-1,2.0-1 2 o o o 2
-1.2,0.0 T Y, Leno |

L2001 2 T o Qo | 2

-1,2,0,2 2 b2 .0.1,2 2

1,211 2 pi 1,1, 101 2 N

.2 1,0 1 PoP 1 L L0 2

1210 2 Y LT 3 N
21,2 T N T N
F.Mi 21 3 ——;J{;i HEEEEN S B

.2,2.0 2 Pol2 -1.2, 1,0 1
_1"22_1 2 ”M'i",i.',fz__'__: 2 I 2

1,2,2.2 2 B p# |22 2

Table 3.2: Rewards and Transition Probabilitics for ecisions (a) and (b)
in States 20, 34, and 40

After some algehra we ebtain
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A papy-pop1-pip2—pf
which cun he further simplified to
2 2
A=pj -py-2p\p2+P2-P3

‘I'he boundary between the regions for request subscts (a) and (b) is given approximately by A =0.

‘This approximate boundary is surprisingly closc to the exact boundary between the regions as

shown in Figure 3.11,

We are not so fortunate with the boundary between the regions in which request subsets (i)
and (b) in state 38 (scc Figurc 3.8) arc optimal respectively.  An analysis similar to that just com-
pleted for states 20, 34, and 40 and again with ‘,l"- v|" approximated by ¢ for all i yiclds

A pipy pi). Phus tic boundary between the regions for request subsets (a) and (b) in state 38

is approximated by p;- py. ‘This approximate boundary and the exact boundary arc shown in

Figure 3.12. "The large discrepancy in these boundaries indicates that v," - v," =q,"“ Vis not a very

good approximation in this case. ‘This is 10 be cxpected since the difference between leftover sets

(a) and (b) is very subtle (sce Figure 3.8). W expect the average reward per round to be alinost
the same for request subscts (a) and (b) over much of the py - py probability space. Of course,
arcaler accuracy in estimating the boundary can be achieved by using more terms of equation 3.13

in the approximiations of v,” - v|".
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Figure 3.11: Optimum decision regions
for states 20, 34, and 40
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We investigated the approximation v,-" - \'1"=¢[,-‘l"’ in two instances. In the first instance we vy

approximated the test quantity (equation 3.9) in step 3 of Howard's policy iteration algorithm by

sk
2 LY )

max ( q,-k4 p,-‘,“”q,-k 3 2/),‘}‘”(1}“") (3.15)
k j#i

Y3

B

where ¢ is the maximum number of grants possible in state j. We found that the decision &

-

yicided by this approzimate test quantity rcliably predicts the optimum decision in state 7 in most

LY
I“l.
S,

.

cases. (The main exception was in state 38.) In the sccond instance we approximated g% by

eve,
. s

ol
i

g = Zl’lj‘/imm- This approximation corresponds to granting the maximum number of requests
J

in every state and ignoring the leflover requests. 'The comparison of the caleulated values of gf

i
AT ¥

and g™ shown in Figure 3.13 for various probabilities reveals that ¢ is a good approximation to . b :
g In every case investigated we found 0<% - ™ <0.22. Figure 313 also shows the :':::t
optimum average number of grants per round for a crossbar interconnection of four slices, This \;:
crossbar intcrconnection is similar to the Ringbus interconnection except for fewer constraints on N
which request subsets may be granted. In fact, the only constraints on the request subscts are des- ‘.f
tination constraints: no two requests that have the same destination can be granted simuttancously. :'.:::‘
Since a crossbar has fewer constraints than a Ringbus, its performance will always be superior o ::::
that of a Ringbus (provided cverything excent for the interconncctions is the same). et
R
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3.4 Optinul Arbiter for Vour Shices and Graat Duration Greaster than One Round

In this s)ection we mestigate the optimal arbiter for the Symmetnc.d Ringhus with four shoes
and deicrmmistic grant darations of 203 and 4 rounds and peomcincaily distniboted grant dura

tsons. Phe basic state descnption s
’ (ridyiesadsiryvdyrgdy)

A doescubed i section 1Y and we assume symimetrie Ringbas probabilities, ¢ p rooANIn
the previous section we apply rotational and (hp symmetry o sgmificanthy reduce the namber of
states required. In et we start with the samie 43 states s e the previons section nd wdd the
1o these staies o abtan g connplete state deseonpion Toweser o complc abon anses crogueaest

may be granted mocither of two wans one the Ringhos o the sbortost Jiecariom toa e sty of

fengih 1 and the dockwise docction for ceguests of deneth Y twe adb s dic pomos o e st o
the longest dircction tor reguests of fenpth 1 oand the o ountcn ek wase dime v v gy b ot
wngth 2 (we call s the woondany dircctioa) L ar o prant o nregn E P L N
Jdosenpuen mast mchude the docctonm m s tnch the teguest e Bocn e g s 6b o s
Allocated to that grant are known One way teomcinde thee ntanmdien o b b cad
with cach prant in pror HICK e 10 doec e an the Rimebas

N e Hoaen sacthad (o mcheal e Jhio o o ret oy e tis T T

i hased oo the follow g two obserns ons

b ! U a roguiest of dore oD pranted i the doneess e e Gt . I Y
othe li,([ll(\l T yralod H L ‘n'H!_a'u G [T . t e ' D]

l granted
N P rogaest o dongth Yo pantcg o e vt e e K do ot b " L

Foean by cranted o he Toageoar B e i [T '
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2. Ixtermine F(n ¢ 1) for all i from:
Vit # 1) mrav( q"‘ ' EI’:V/(”” (3.16)
k J

The policy i round o+ Lis Dn ¢ 1) [d(1).d(2), - - - ] where d(i) is equal to the decision &

which m.aximizes the right hand side of equation 3.16 for state i,

3. Increment o, go o step 2,

Fhe real power of value iteration is duc 1o the so-catled Odoni bounds [O?] which give upper
and ower bounds on the opumal average reward per round. These limits improve on cach itera-

ton and  oventually - comverge  to the optimal aversge reward  per round. Deline

S.4n) b,y Vo D) L) min §n). and ) max §,(n). Aher the n'

! i
step 2 we have

Pin s DK <Un ¢ 1),

Funthennote, £ 02ty and U0 <E () Tor s <n. Theeelore after the n'

Ul « VY1 L+ 1)
) .

iteration of sicp

Yoo gy be ostimated by ™ o™ 0 1) As  n 00,

! (',); oo oo™ b ) V), v, oand I )— D

For onr parposes. © due et also b noplamentation advantages over Howard's policy
oraron - Wath value ier oo we nocd cnly store the V() Tor all states and the regnest proba-
bilies o The possibie deasions & and assoctated rewards, q,". and transition probabilities, p,’j‘.
can be computed on the v, Witls pohicy iteration, at s dddticult o solve for g” and the relative
calues without it having calculated and stered all the g, and p, for a particular policy. which
Feguites o ot ol stotage il the number of states s large.

!

O conise with value werateny nether the estimate of g nor the estimate of the optimal

Potnas o esarly cviet Howeser [g™ ) 1] can be as small as destred simply by iterating

opr

et ol Taee e The ditierence betwesn the upper and lower bounds on g™ indicates the

Gt ane e o ans dilcrences between ) and DO

bor the Lupe tunber of states that we ae considering, ary other known micthod would also
c o approannate cesults Wath Howard's policy teration we would have to use iterative tech-
i e nbton o approvinate selution o the large set of simudtancous equations represented by
Sguation VR

etore e st dotommeste and peomctieally distitbated grant distrtbutions, we intro-
1o Wt Wecors e o ase e to denote the aectape reward per round. However. we

v e cw e ocd s the namber of new and contmng grants i that rotnd

iteration of
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166 Ringbus Model

(rather than just the number of new grants in that ruund).f Thus g is better thought of as the
average number of grants in progress per round. Of course. it all grants have the same duration of
one round, then g is also the throughput. We define the throughput as the average number of
new grants per round and denote it by 7. Yor a general grant duration distribution with mean d
rounds, the throughput and average number of grants in progress per round are related by
7 - g/d. Vhe throughput of the Ringbus is also given by the number of slices divided by the mean

cycle time per slice. This yields the throughput balance cquation

S =

— e ——— = =p/d 3.17)

Po . -

- fwpptd

1-po
ro . L . . - .
where - is the mcan processing time per slice (pg is the probability of a null request), wgpy is
Po

the mean waiting time per request,  is the mean grant duration, and S is the number of slices.

3.4.1 Deterministic Grant Duration of 2, 3, and 4 Rounds

Using value iteration and Odoni's bounds, as described carlier, we obtained estimates of the
optimal average number of grants in progress (tivially related o the thioughpuat) and estimates of
the optitad policy for the Svinmeteic Ringbus with deterministic grant durations of 2. 3, and 4
rounds. Figure 3.14 shows the optimal averiage number of grants in progress for these three cases
and for grant duratons of one round. as investigated carlier, for selected probabilities. All these
estimates, except those marked with an ssterisk. are aathin £.003 oi optimal, Phe asterisks indicate
estinates for which a tolerance of £.005 wis not achicved after 100 iteravons. The snaxumum

crror in these estimates, as determined by the bounds 7.(100) and U(100). is £.0175.

1 There i no theoreteal reason to prefer one of these defindions of the reward over the othor With oar defim
tion, the solubion of the Markovin deasion problom veelds the averape simbet of poants e peorioss g found
With the other denation. the sofuten veelds the thiooghpet The avera o immber of prani e provtoss pwet
round and the throughput are tvedhy relaad as shown e Gaotion V17 Thoge s howesar ooyt i rceon
1o preter our detimtion of the eward over the other detiation we founad it the sabue acnaton micthod con
verged faster with onr defimition
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Note that the optumal avereee number of grants in progress (which we will call simply g m
the rest of section 3.4) s & strone Tunction of the grang dutanon, - when pg s large - e, light
loading. As pg doecreases, the goant duration fas dess effect on g e Lt for pg 00 g appears (o
be independent of the grant duration (1ot detenmimisuic grant duations). These observations make
intuitive sense,. When pg s large. nonnull requests are rare and occur with almost cqual likehhood
regardless of . The differcace s that the grants last longer for larger o and thus contnibute more
o 2. When py s simall, the Ringbus s nearly satutated with nonnull reguests every round and
thus o/ has it effect on g Section 142 cxannnes thewe observations with imore nigour.

Because of the large number ol states, espectally foe 4010 s impossible 1o discuss here i
detanl the estumated optunal deasions i cach stae tor 2V and 4 Instead. we will just discuss
one mam trend obsenved m the csimated opimal decisions, e was exhausting cnongh o cxamine
Al the states toi vanous probabiities o deternine tas arend.

Ihe i trend s the followmg mieresting obsernvation: amctimes the estimated opianal
decsion i somie sttes prmts ko than the ot cewand an those states The states i which
this: phenomenon was obseived Lail wito two mein Jasses ) sttes with o soall (one o twa)
nnber o nonm! reqoests alb anpemted so tar and D) states with o large number of seguests with
gramtsan provee coand g aodbaamber ol aneraeied nonall ceguoests An example o asiate e

st class s the stte
(T I T T I I | Y

Mthoaeho e rogocse oot seo o ammcdetehy protabhbe e opteraae Canmated o o some
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‘The less than the maximum reward tendency is most pronounced for heavy loading - i.c. small pg
-and large d. For light loading - i.c. large pg - the estimated optimal decision in cvery state grants
the maximum reward,

An explanation for the observed tendencies is that there s a tradeoff between the i cediate
contribution to throughput oblained by granting a request and the possible future degradaiion to
throughput caused by the constraints imposed on future grants by granting a request. For o grant
duration ot  rounds, any request granted imposes constraints on which requests may be granted
in the o 1 rounds after st is first granted. For light loading it is unlikely that a nonnull request
will arrive within o rounds of granting a request and thus the future degradation caused by grant-
mg requests s neghgible. theretore the tradeofl s favour ol granting requests inmediately and
henge the endeney towards granting the maximum reward tor light loading. For heavy loading, ot
movery hkely that a nonnult request will areive within o rounds of granting a reguest and thus the
tuture degradation caused by granting requests can he very sigmficant. Fhis degradation can be
seduced by avending Large ditferences i the ducation that different grants have been an progress.

States 1wy the fust s (ol the two mentoned carbier) achieve tus by not grantimg any requests.

In heavy loadimg oddinonal nonnall reauests will hkely artive very soon, co it makes beuer
Lo 1w e it tiese teguests anne and goaat b the requests at once rather than grant the -
Vol request and delr, the veantimg ol any subseguent noanull requests anub the grant ol the il
requost Wimee Sotes i the second cassavond ditterences i the duration of wiants me progress
by Jdeba g the wontae o new noenal ccgaests ot the grants i progiess wenmmates. he result

o hicany boadimg s that ol oot o e tend e hone e some ditatron i progress

Eins o heas s Joadimg there as atondenoy towards ganting sequesis at menvals aof  roenmds
W tcim e an alondnn s mtcoval adgonthim Note that anomgenval algonthme compleiely
Cirmates the thiemghpuat degradatoon cansad by the constosnis agrant anposes on futare ponds

LT ETY prands anoan terval do ot HTTPO S consttannis on the 3 ks n \ll\\\‘('\'lll)( ntery als
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opt 2 opt N
as a1 and o 5 . heed not be. :::\
AL po) T A - po¥ BN

For any particular policy {Le. set of decisions in cach state), all the derivatives of 7 with
respect (o the probabilitics will be continuous.  However, the optitnum policy can vary with the

probabilitics. Thus the optimum throughput over any portion of the feasible probability region is,

in general, a piccewise combination of the throughput of the optimum policy in cach subregion.

The derivatives of 7 with respeet to the probabilities will aot, in general, be continuous at the .
Falg
. . . . N L T ~
boundarics of the subregions.,  Fortunately, the number of discontinuitics along any ray is finite N
| A _— | | | ot pe
since there is only a finite number of different policies. Strictly speaking, is not defined Ly
a(l - po) 7 A
hAYY
al such a discontinuity. but it may be defined o have the vatue of one of the policies at the point
L -,
ot discontinuity. In this sensc, is strictly positive for all pg along a ray (exeept possibly
a1 pop) )
at the end points). e
d opr
I s abso obvious that <0 for all py along o ray, except perhaps at discontinuities
? 0 .
) )
Po) o
PR
at the boundaries of the subregions corresponding to different pohicies. (Recall that the aptimum YN
W ope ‘:."o:'
policy can vary with the probabihities. Note also thag , snat detined ot such discontina- s
ro) 2./
! .- . 2}
| tes). Withen any particular subiegion along a tay. the rate ol iercase ot 17 wuh L pg e
o
| decreases as 1 pg increases sinee there are fewer null reguests o replace by nonnull
d( i /’h)
. d?,up' \v
requests (and thus merease () as 1 py ncreasass tenee, , <0 within the subregion Py
a1 po)
and thus 17 s comvex down v 1 py within cach subregion along any ray. Note that it does not
2, opt
- 0’;[ a ’
follow from this that / s comen down overywhere along a given ray, cven oif , 8 .
ol po) o
redetined at ponts of discontinuty  In sumimuary, 1M monotenic i b py evervwhere along o &
tay and comvex down o 1 g waithim any subregion along a ray. ORE
1.4.2.2 Bounds on the Optimum hroughput with Deterministic Grant Durations )
1t I;,l T and "'/"{ “Udenote the optimal thioughpit and the optimal aiverage number of
<
prants pes ronnd respectively tor grants with a deteommntic duration ot >0 round and tor somie -
set ot prababihities pg. p, sy~ denoted by g7 08 s the number of shioes) Stmlarly et l;,l ‘
amd L,,‘/ denote the optimal throughput and cpumal nerage number ol grats per ioend “
~
rospectinnehy o grants vath o doraten o one tonnd and Tor some set o) profatabioies g py
oo denoted by T Now o the same sar of probatiiiies noeach cse e gt ) the -~
~
Y
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optimal throughput with ¢>1 can bhc no more than the optimal throughput with « 1. ‘This fol-
lows since for a fixed set of probabilities the optimal throughput cannot increase as o increascs.
Thus

Ii}l>|$llg T oor g;,!>|$(lgl‘,l:l.

For d>1 it is possible to grant at Icast the same average number of grants per round as for the
same sct of probabilities for « - [ The argument is as follows. Restrict the instants at which all

1™ round

new requests - cven null requests - for d>1 can be granted to the beginning of every ¢
in synchrony with some clock of period o rounds. (Note that null requests have a grant duration
of onc round and nonnull requests have a grant duration of  rounds. Restricting the granting of
null requests o every d rounds synchronous with the clock of period d artificially lengthens the
grant duration of @ null request o rounds.) At the “arbitration instant™ at the begimning of cach
successive interval of o rounds (synchronous with the clock of period o). grant the request subscet
corresponding o the optimal decision for that request sct with o/ 1 and the same set of probabili-
tes. The result is an arbitration algorithm for /> 1 which is exactly the same as the optimal arbi-
tration algonthm with 1, the same st of probabilitics, and a arbiter clock period of o . That s,
by

1) restricting the instants at which new requests - even aull requests - can be granted to every

« rovends synchronous with some clock of heriod o, and
2) using this clock of period o as the arbiter clock,

the arbitration problein reduces to that for o - 1. Thus

d Ve d>] Va1 d>i
g <gy or -ty <tz
7 14 d7r 7
We call an arbiter algorithm that operates in accordance with point 1 above an interval algo-
nthm. We call the optimum algonthm subject to this cestriction the optinum interval algorithin, As
Just discussed above, the optmal iaterval algorithm s exactly the same as and achiieves the same

throughiput s the optinal algonthm for o 1.

I hese Jower bounds on ).',',!>| and l/”{>!

null requests can onby be granted at the begimning of ¢very o rounds synchronous with the clock

aan be tightened by removing the sestriction that

mterval of peniod . Instead. et null requests be granted unmediately whenever they occut as was
the e our onginal formuolagion of the arbtration problem. However, thas atfects the probabil-
1y of requests v oseen by thie (ostncted) arbiter every arbiration aestant. The (restrcted) arbater

sees o nulhrequest at on e biapon mstntaf there have been evactly  nall requests sinee the last

arbiranon anstant, otherasase osees o nonnull reguest. Thus the (resticted) arbuer sees v nall
d

pl et
(l /'1),

request with probabahin 1,'..)'1 and o nornull reguest of fength ¢ owith probabihin
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172 Ringbus Modcl

‘Therefore
gd—‘lsgd>i or - ’i(fl"-'|<’;>|
, . pitl=(pa)")
where pq :(po)" and p; :-I—"——ﬂg---, 1<i<S.
(1-po)
agd:l
This lower bound is casily scen to be tighter than the previous one since 5(—1——) 20 for

—Po.

every po along any ray in the feasible probability region,
The complete bounds on the optimal throughput for a deterministic grant duration > 1

rounds arc:

d
‘ . nl (pa)®)
where Po (/70)" and no - oo
(1- po)
pletely m terms of the optimal throughput fuor 1 which is a much simpler problem than for
d>1.

5.',‘,“' and r,;'.>' approach their respective uppet bounds as pg— 1. This can be shown as tol-

N<i <572, Note that these bounds aie expressed com-

lows. We have

DU N
Po d>1
d>1 © twipo+d 4.
Iy I po rot (1 polwgys  + 1)
o e o L d>
/;fl N _-s [)04“ I’OXW‘R” td)
ro -
- ‘ w,‘{,, Y41
di]
l"!)l
Faking the it as po-+b for which wiy 'S0 Lind n;{,?l—*()‘ we have lim /.1 (b oand
"n i l,"
)s';,’l>l
lnn! 7 d. Thus l,',.l>'=l‘! ' and .,;l‘,(s'::dx;,! 'fon pol The ostmated optimal average
Po™" Ky

number of grants per round for hgite foadms shown m Digure 314 corclates well weth dhas lateer
resull. Thos resalt justities the ittt reason given o section 341 tor the strong sebsionship ot

A.',‘.{M with  for hight leading.

Sunnlarky, ,1:',!"| and gt sectnt o oapproach there respoctive loac: bounds o~ =0 as oy
s i A | i }

gosted by the rosudts for =0 m igure Vd for S

Jond 2 X and dounds WLowore ue ble
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Ringbus Model 173

1o prove this conjecture.

3.4.2.3 Approainnating the Optimal Throughput with Deterninistic Graat Duration

If d. the grant duration, is large, the number of states required to cakeulute gljf>' iS very
large, making its calculation difficult. A more attractive approach for Lirge o is o approximate
g“}>'. {n this subscction we present a simple approximation to g;,P' using ,,-l‘}“‘ and the value of
d. Since li‘,l>' is trivially reluted to _"‘,D'. this approximation also arplies (although mdirectly) to
,d>l
p .

d>1

The ratio Edf]— has the following propertics along a ray:

8y

1) 1tis a continuous function of 1 pg.

d>1
. &
2) lm g1 9
— ] oY -
P By
a'g!.,!>|/ ﬂ;’l l,
3 lim - : -- dd 1)
Py 1 a( 1 l’())
d>1
I additlon we coojeciuce that hm 4 , L
;’0-‘0 )v;,
d>1
L

We choose (o approtimuage v by an cvponentiad function wativ the s s Coe 0y and

hr'
sope (0 JGE DY a pg Lo the same asvinptotic salue as conmpectured a0 0 he o

approviuation along any ray s

d>|
r thopy) .
/ = e . 1 Ny
.
&
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pd>!
| For J Y the approamation overestimates ’:l ;o about py>.1. bor d 4 the approximation
L
d>)
wems e shghtiv andeicstimate o or about o< 1 and otherwise it slightly overestimates the
Ly

ratw

We do not know what performance (o cxpect of the approximation in cquation 3.18 for
arger volues of S and o However, it s abso clear that the approximation is roughly correct:
d>
Kp . . .
must decrease trom o o L as U opgangreases from 0 to 1 The approximation has two key

Ke
advantages Dm0 s ey simple o caleulate. Second, it reduces the determination of g,‘,{>' to

o

, A much sumpler problen. s second advantage cannot be aver-

the Jdorcmumation ot g
statcd e Lge S e dithoult enongh to determine g;,{ ' as discussed later in this chapter, let
Ahin gf'_./ T dndecd nthe remander of this Jhapter Texcluding the ney two subsections 3.4.3 and
Y30 we ondhy consader the Ringbus with o/ 1 and point o equation 318 for treatment of arbi-

wars deterrnasoe ghant ducations,

Vi Y Geomeine Geant uration

ot e opemial o hput of the four shee Symmetric Ringbus with geometric

Voo
o duoors we sad e sane state dewrpion as discassed carhier for e detarmmistic grant
detanon o Y ounds Thweescs medoad ol nrerpreting o € 000 1) as the number of rounds that
M s e e has eer coted weonte preted o, a8 a boolean salue indicating whether or not
' s v oo wos e aicd e the preceding round L shee's requiest was granted in the preced-

mp roned then o remoeacd gianted e the current round with probabitity prbconr and i ter-

mnatcd rmodiatche poor oo the cuirent tound with probability 1 prbconr. Thus the grant dura-

Do Juest was copeoectne tandom vanable wath mean : - .
) prcont
N e e et od Odons bounds we ebtined eatmates of the optimal average
e, e an pooetoss and ostinates of the aptunal policy for pebeonr 001,.5, .75, .9, Lig-
e o ey Ssienacd optal number of grants in progiess per round for these four cases

w s cgoes probabidities A these estimuates e within £ 005 of optimal.
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198 Figure 3.16: Average number of grants in progress per round ‘- "
BIRE for various geometrically distributed grant durations
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durations,

As with determmstie grant Jurations duw stnatc b aptoie e e e e (TR
ot ccoward sn some ctates Pho state s e whach dhas i o e w0l 0
the pattern of having traar cme o three nommadl soguaests ot whacty g e oo b Canited

so tane Indduded i those states were those i the fise ot the twe moan chocs dosconbed tor doter
mnistic grant durabons but noe those i the second of the two e cleses A oapl nation tor
this cwclusinn of the second pum class s that the i reqrarad ol A grants ooty o pro
gress tenmmate s enknoan and posably very larpe 1he number of stdes anowinch the streated
optimial decision e to srant dess than the mavimiem roward seems o ncicase with both pyand o

(ic. prbcont ).

3.4.4 Other Grant Duration Distributions

We cannot say much about the effect of other grant duration distributions without further
study. However, we can give the following gencralitics about the opumum thronghput with any
grant duration distribution:

oM is monotonic

|B] Along any ray for which the nonnull probabilitics have some fixed ratio, ¢
in 1--pg everywhere along the ray and convex down in 1 pg within any subregion (i.c.
within any region in which one particular policy is optimal) along the ray. The argument to
support these two conclusions is the same as that given in section 3.4.2.1.

2) If li;’ denotes the optimal throughput with some grant duration distribution with mean d
and some request poobabilities pg. py. -, py o denoted by 7 and if lg-_-l denotes the
optimal throughput with a deterministic grant duration of onc round and the same request

probabilitics denoted by 7, then
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viban 0 (o antd DGy T e D whaae DGy and 1 e ) e the appes g Jowes bounds

ool T e nodceatiens)  Phas rogusred an v enage ol about aterations foe cadh st

S peoboibes Dgrare 30T dows the optimat throughpat (o wittnn £ 005) obtincd 1o welected

probybndiies

N
Porare VL o shows e throughput ostniated from the aclanon 1Y )_/1,,:;,"“' where
I

I most cases £ s o surposingly good estinie of the
1™ <3S (Notall of

4 e manmom o reward in stie
optiotd hronghput 177 Ty evers cre e estiated we toand T

those results e shown i Figare V17 o avord dutterag the figure) Tooall cases. exeept for four

alon the edge po 0 and py 0 and one at pg O pyp 1000 py 400, and py 00 we found

lu'\l <I.'pl
There are tar oo many states o determine and analysze the optimal decision regions as we

Furthermore, the decisions determined by the valuce iteration do

did for four shees in section 13
1

not nccessarily comprise an optimal policy - they only comprise an estimate of the optimal policy

- 50 it is best not o exaumnine them too closely, Thus we will only discuss the main trends in the

decisions. We will also discuss the performance of some rule of thumb policics.

T DEC and VAX are trademarks of the Digital Fquipment Corporation.
F As discussed in sccuon 34, a pohicy deternuned via value aeration s optimal only in the sense that the
throughput with that policy is within some mieeval, pven by the Odont bounds, of the optimal throughput.
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Py
.’
I::
Ime maost interesting trend in the decisions is that, unlike the cise for four shices, it s not ,:
. . . 4
atways best to grant the request subset with the maximuin number of requests (te. reward). Lo PN
cvery sct of probabilities considered. we tomnd at least one state in which the estimated optimal N
»
.. . . . . ~
decision is to grant some request subsel having foss than the maximum reward. The number of %
h)
states with such estimated optimal decisions is small for pg large (i.c. light traffic) and increases
rapidly as pq decreases (i.c. as traffic increases). The most rapid increase of the number of these N
states as pg decreases oceurs for probabilities in the py - py plane - i.c. for p; -0, 0
Y
. » - . . .. . L
One state in which we found the estimated optimal decision to grant less than the maximum N
.
reward is (-2, 3. -1, -1, 1L 1). The subset with maximum reward is (0,0, 1, 1.1, 1). How- o
. > . . . . . P ..l..
cver, for cvery set of probabilies we considered. the estimated optimal decision s to grant the LS
subset ( 0, 3,0, 0. 1. 1). "The request set and these two subsets are pictured in the diagrams in 1ig- ;\\
-
urc 3.18. N
N
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Figure 3.18: An example of a request sct for which the estimated optimal

decision is to grant less than the maximum number of requests

Note that the requests of length 2 and 3 conflict.  Evidently this conflict reduces the value of the
leftover of the maximum reward subsct compared o the value of the leftover of the cstimated
optimal decision to a degree that cannot be overcome by the larger reward. An additional factor

is that both requests in the leftover of the maximum reward subsct are long requests.  [n heavy

traffic long requests "cost” more than short requests to grant since they involve blocking a request

.,
& %

2 I'
. 8
ok

from cach of the onc or two slices along the route which the long request is grianted.  This factor

"‘o

.
g Y
) e

»r-
.
-

“
»

o« a
-n{
(B

L4
/’
/.-
7

»

%
X

-".\‘.'v_.:_.\..‘-‘,\ RIS IR

ORCA NG
NRRIRANAAN

R AP RN RO AT R N R RN AT RE AN
L3 ,% R S -,\..'- ‘i..-l..\'." y \l'.x.-\“‘l;w.

o

a2,
L7
2
Y
’
[ 4
".

Ly
"

.

P



. .
AR
'l

:

Ringbus Model LY

.'l

AR R
o N UL N Y

seems o predommmate i the states i whch the estimuted optional deasion s to poant loss than

5
&

the maxmuns reward: all sich state s have e of ong and short rogquests B states o which all

X

»
L

nownull reguests are of the wine kength the estimated optionl deosien o adways to prent one ol

the request sabsets with imaamim ceward. A stte typical of those e swlnch dhe ostimatcd opinmal Al
r)
decision s o grant less than the maxumum ieward s : e
Pl
( 2.0.5.2.8.1) -
The subset wath maxunam peward o (001 0.2 0.1 but tor many et of poobahdities the <
oL
cestumated optamal decision is the subset (- 2,0,0, 0, 3, 0). A more glanng example s the state SA
e
( L L3 0Ly .
e ,'c'.'-
IMe subset with manimum reward s ¢ 10 LOCO 10 1O yet (00 V000 1) s olten T
. . Kl 0‘,~
ostimated as the best subset. Note that the feflovers for both these subscts are unmediately grant- L
- e
al
P S

ablc.
To determine the significance of the fict that the estimated optimal decision often midicates
that the request subset with maximuan reward s not the best o grant, we modiiicd our value itera-

tion program to find the optimal throughput of the Ringbus with the additional constiannt that the

request subset granted in cach state must have the maxomum reward possible for that state. We

call this the maximuey reward constraint. Figere 119 shows the optinal throughiput (1o within ;_'-::,':
£.005) of the Ringbus with this constrant for selected probabilitics. ‘The amount by which this ::'_
throughput is less dum that without the maximuim reward constraint for a particular set of proba- -':
bilitics is indicated (to within 3 decimal places) by the quantity i the brackets. ! “
FFor most of the sets of probabilities investigated, and especially for light traftic (i.c. pg large). ;'.';

the optimal throughput of the Ringbus is not significantly affected by the maximum reward con- ;_-:::
r_:.:

straint. ‘The most significant reduction caused by this constraint occurs mostly on the face py 0

;-‘I
A

and ncar the face pg -1 for py lirge. Another way to describe this region is tut pg is rather

small, py is Large, and py is very small, In other words, tratlic is fairly heavy and there is mainty

t short and long requests. Of the probabhitity sets considered, the largest reduction in throughput -

%

at least 057 - occurred at py - .4, py- 0, and py -2, The fact that the maximum reward stratepy

L 4
L}
[J

is not optimal in this region with heavy traffic and mainly short and long requests is casy o sce.

/Iﬂ:lx /I“.‘IX

+ Ihe quantity in the brackets is actually /. - { where { is the upper bound or the opumal
throughput with the masimum reward constiaint and /i the lower bound on the optimal throughput without
this constraint. ‘Thus the actual difference in throughputs exceeds that indiciated. Nothung s maiciied inside the
brackets it /, <U™, =3
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» Optimal throughput with
maximum reward constraint
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> Amount this throughput
18 less than the
uionuasined opmal
throughput (see footnote
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Figure 3.19: Optimal throughput, subject to the maximum reward
constraint, with six slices and onc round grant durations
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Reguost sabsets with only short regquests will osaally have a Lrger reward than sabsets with
a g reguest s o doeg roguest ol wend o reamom cmgeanted tor o long time (until mest of the
othar teguests are alse oy Ehe sboe which subomded e Jome reguest s presented ewn sulby
mitong further requests  Fhos aosinosice Raagbus could be cticcindy taduced o ive operating
shees This etfect can be especially severe it pg 30 and the long request s very rare comnpared o
the <hort reguests  In s case the long request will remain angeanted for sovery long time and

with provent many potential short reguests fronnats onginatimg shee trom bemg gencrated and con-

r r’
tthuting o the throughput. 1 or pg=0, 2S5 p> 0 oand =0 the optomal dedsion s
I po 1 pa
. . - P
obviously o grant any loag reguests fust? - On the other hand, tor py=1 | =S, py O0.and
I

2200 a0y Tamg request cangust wait G short ime on average) uatl there are no other requests (o
conthet with the long reqaest and thae the optimal deasion s o grant the maxamuin number of
requesis.

An cxummation of the estimated optimal decistions resealed that the reguest subset chosen
often utihzed the maamum number of segments. Phus endeney scemed particalarly strong i
thoswe states for which the estmated optumal decision was not the maxamum reward request subsct.
To establsh the et ot the maomun: namber of sepmciis straicgy. we modified our value itera-
ton program to find e ortmal troughpat of our Ringbus madél with the additional constraint
that the request subset goanted in cach state must utilize the maxamuey number of sepments possi-
bic for that state. I compuung the nuimber of segments a request subset requires, we use the
number of segments that cacir request would require if it were granted in the shortest direction
around the Ringbus. Thues the number of segments that a request subset utitizes is equat to the
sum o1 the request Iengths for those requests granted.  Figure 3.20 shows the optimal throughput
(to within £.005) of the Ringbus with the maximum number of segments constraint for various
probubilitics.  As for Figure 119, the amount that this throughput is less than the unconstrained
optimal throughput (displayed in Figure 3.17) for a particular set of probabilities is indicated (to
within 3 dectmal points) by the quantity in the brackets.
1 'The throughpat hsted beside the point 1y .S py py - 0 Figures Y47 and V19 s actually for the point
P 498 ps o py BOT (A zero probabilines were replaced with very small probalnhines so that the same
state space and sune program could be used to cilculae all throuphputs for st shiees without possible problems
caused by nonconnunicating states A states communeate t p, 20 for 1<7i <S8/ 2) itis accouds for the
apparent contradiction between ou: carher observation that the osomated optinial decision s o grant the max-
imum reward  reauest subset meostates with all ronaull requess o the same length and the fact that the
threughput listed in $igore Y19 for the pomnt oy =5 pa--py O with the maximum reward constramit is less
than optimal - A separate analysis confinned that exactly at the pont .5 p>  py -0, the optimal policy
prants the mavumum reward subset o every state. (OF counse, evtetly at the pomt gy = .5, py=py -0, all
states have all icquests of the sime length)) max i
T e quantity o the brackets i actually Lo UM where U™ is the upper bound on the optimal
threughput with the maxamunm scement constraint and /. i the Tower bound on the optimal throughput without

thas constrznnt Thus the actual dilicience m throughputs cxeceds ta indicited. Nothung s indicated invde the
: NRIX
brackets of /. <U
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Optimal throughput with
maximum number of
L) Y 206 segments constraint
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)
i 2 (J“‘,’ Amount this throughput
¢ : i loss than the
” uncontrained optimal
I
S ) throughput (see footnote
in text)
5 5
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Figure 3.20: Optimal throughput, subject to the maximum number of
segments constraint, with six slices and one round grant durations
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For all the sets of probabilitics investigated, the maximum number of segments constraing
only caused a notable reduction in throughput for py lage, p>=0. and py small to medium large.
This is the sune region (heany ratfic, mainly <hort and long requests) for which the maximum
reward constraint caused the maost significant reduction in throughput. However, the maximum
number of segments constiaint never caused as large a reduction in throughput as the maximum
reward constraint. In fuct, the reduction in throughput with the maximum number of segiments
constraint provides an cfficient compromise between the conflicting desires to grant the maximum

number of requests ina state and minimize the waiting time of long requests.

One might conjecture that the optimal policy grants the request subsct in cach state with
cither the maximum reward or the maximum number of segments,  However, this conjecture
scems to be false in general. 1t iy indeed true that for most states and for most probabilitics, the
estimtated optimal decisions correspond to cither the maximum reward or the maxinum number of
scgments (or both) request subsets. As pq decrcases and py increases, the number of states in
which the estimated optimal decision corresponds o neither maximum reward or  maximum
nwnber of scgments increases, but it never exceeds about 90 states. T'wo typical states in which
the estimated optimum decision is often neither the maximum reward nor maximum namber of
segments subsets are (—2, -2, 3.--1,2, -Dand (=23, --1.- 1. 1.-1). For the former state, the
request subsets ( 0,0, 3, -1, 0,- Dand (0, 2,0, - 1.0, -1) achicve the maximuin reward and the
request subset (0, 0, 3, 1. 0. - 1) uniquely achicves the maximum number of seginents. 1'or the
latter state. the request subsets (0, 3.--1,- 1,0,0) and (2,0, 1, -1, 0. 0) achicve the maximum
reward and the request subset ( 0, 3. 1. 1, 0. 0) uniquely achieves the maximum number of seg-
ments.  However, the estmated optimum decision in these two states is often (—2.0, 0.0, 2. 0)
and (0, 3.0.0, 1, 0) respectively. Figure 3.21 depicts diagrams of these various possible decistons

in the two states.
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the request subsets (20,000,200 and ¢ 0.3 000.1.0) allow at least Voaequests o be _::\
N
granted i the round tollowaing the states ¢ 2, 2080 1LY Dand e 23 10 L1 Droesped -
Y
el Al the aiher request subsets aliow ot least 2 teguests  Fhas depending oa the probabihies NN
L
. . . o
of the vanous requests, the etlect of not granung the muaximuam naimber of reguiests i the subsct ,\'_f-
-
‘a
( 20.0.0,2.00 and (0.2.0.0. 1.0 can be compensated o some degree by possibly granting -:_-
N
more requests in the following round. OF counw, the relative values v, vy of Howard's policy -
iteration algorithm (which can also be estmated by b () 1 () m the value teration algonthm) '.:;\'
. . e
give the exact degree to which ane request subscet s preferable over another. e
| | I
A possible tule of thumb for the decision in cach state so as o achieve near-optinial \1.::
q..
throughput of the Ringbus is 1 grant some request subset utilizing the maximum number of seg- i
ments. As we discussed carlier, the maximum number of segments constraint only stightly aflects NN
. . . . e
the optimal throughput. A more precise rule of thumb pohcy that we unestigated s e following, o
- L}
N
In cach state grant some request subset that: RN
I\‘l
1. utilizes the maximum number of segments,
2. has the maximum numbcer of requests subject o 1, and
3. has the maximum aumber of the longest requests subject to [ and 2 (i.c. a request suhset with
requests of fength 1, 2, and 3 & preferable o one with requests of fength 2,20 and 2).
Constraint 2 scives mainly o 1cduce the namber ¢f ehigtble reguest subsets in cach state :—:.:"
. . . . . o
while keeping the reward large. Constraint 3 ensures that long requests are granted before shorter .':,-g :
)
y onges (for subsets mecting constraints 1 and 2). :,.: ‘

We mvestigated this rule of thumb policy by deterimining the estimated optimal throughput
subject to these three constraints for the 91 scts of probabilitics with py, py, and py some integral
multipte of .1. (We used these same sets of probabilitics whenever we calculated the throughput

for any variation of the Ringbus model with six slices).  For ¢very set of probabiiitics considered,

the cstimated optimal throughput with these constraints was close (within = —.009) to the
' estimated optimal throughput with just the maximum number of segments constraint.  Further- i‘:',‘_';:
] more, in the vast majority of states there is only one request subsct that meets constraints 1, 2, and ".::.::
3. ‘Thus. these constraints function well in reducing the number of possible decisions in cacl state :':
without affecting the throughput by much. Quite a few states remain, however, for which there is ."’
o still more than onc request subset meeting the three constraints,  An cxamination of these states ;:ff

, .

X revealed that for most states these remaining subsets are cither related by symmetry or ncarly ,:‘-;-"‘
. identical. We belicve that the throughput would remain essentially the same if for cach state, the ;“"f
i request subsct is selected arbitrarily from those miecting all three constraints. For that matter, we "ﬁ,
:; suspect that the throughput would remain approximately the same if for cach state ihe request :.:"
P subset is selected arbitrarily from all thase meeting the maximum number of segnients constraing. -}‘:-:
2 e
) RV
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LS. Bounds on the Oplimal hroughput -
‘o,
WMo now diesross thiee dillerent beands Gl opper bounds) on the optimal throughput o the
hJ
. -~
Ringbus. Caveals are; :
3
D the Ringbus has symmctrical access paths - Lo it s a Ssmmcetric Ringbus, A
e
. ~
2) all shees have adentical request probabilitics and geometnically distributed processing times (as "
axsuined i secthon 1), and el
1) the duration of abl grants i a single round. .
N .
| . . o
w All of the bounds can be extended 1o deal remove these restrictions. However, all these exten- e
| ot
. . . - .{-
stons (Cxeept from a symmetne o o non-symimetric Ringbus), complicate the calculation of the
1 bounds and thus inakes the bounds less attractive. e,
! \':‘-.F
[N
/ DAY
M5 11 Flow Model Bound N
SN
A
Denote the rate at which requests - null and nonnull - arrive at the Ringbus (in number of
requests per round) from slice 7 by A;. Because of our symmetry assumptions, A, is the same for ":-E
L}
y
. . . . . Y
all slices, thus we simoly denote the rate by A, ‘The rate at which nonnull requests arrive at the :q'"
. . . gy M M v . N ~
Ringbus from a slicce is (1 - pg)A. Thercfore the throughput of the Ringbus is S(1--pp)A where § s :
. . "
is the pumber of slices.
-..‘...\
We now consider the riate at which requests are granted from a slice for various destinadons. N
Thkis rate may be likened to a Now: nonnull requests flow into the Ringbus from ene slice at the e
- . L . RN
cate (1 - p)A. The Aow from a slice to a destination ¢ segnients away 1s p,)\.* We assume that all .-:-.{ )
LA
requests of fength 0<i<S/ 2 are granted in the shortest direction and that requests of length
—
. . . . . o . . . . “u
S/ 2 are granted in the clockwise direction. ‘Thus this flow divides in accordance with the clock- ':-.';\‘
. . . - . o~
wise or counterclockwise position of the destination relative to the source. \: !
oo
S/2 ip: S£2 TN
Pi DAYy

The total clockwise flow over a particular segment is (1 -- pg)A 2 U pay =X 2/ pi. Simi-
i\ "I’O i-=1

larly the total counterclock wise flow over a particutar scgment is
S/Z2-0 I pi 5721
(1=po)A 2 —(l—-“-; =N 2 i p;. Thus the total flow over a particular segiment is
i=1 -Po i=1

S/2:0 240 p, S/2pssa

(A=poA| 2 -+

SR =(1- poAl
Ao (-pg) (-po) (1-po)

where [ is the average length of a request (in terms of the number of hops or segments required)

T ‘The probability that a request is for a destination { segmeuts away from the source. given that the request is
~-

Y % °r

l) L]
nonoull is - - - yiclding a Nlow of - - b ( -poA pA Y
ro (L po) N

0
[ATAFS
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grven that the regoest s nonnull, By symmetry arguments, the flow is identical on all segments.
The total flow on any scgment must not exeeed 1 (i.c. one grant per round). thus

(1 pe)A <1 and therefore

’opl<'§.

.,

‘Ihis bound is best for heavy traffic - i.c. pp=0 - but cven then it is not that good.

‘The throughput of the Ringbus can be written as

S

l =

Po .
— =t wi
- Po

ro . . . . _ . - .
where L the average processing time (in rounds) and w is the average waiting time of a
i=Po

request (agein in rounds). Since w2>{), we have
<SS —po)
yicldiug a tizhter bound for light traflic, i.c. pg=1. Thus

1M <LS min( 17 (1 -p(,)| (3.19)

The effects of seginent and/or destination conflicts must be included to get more uscelul Bounds.

3.5.1.2 Crosshar Bound

An alternative wity to obtain an upper bound on the throughput of the Ringbus v to con
sider a simpler model. One such simpler model is to consider only the destimation of regoest
other words, ignore the scgiments that o request requires. For S shees, suple tound prao. 1

tons, and ignoring request waiting times, the state descnption of sach o madel s
(ryrs.- - .r)

where r, is the destination (1, 20 -+ L or ) ol the roguest at b b
aull requost at slice 7. Altcrnatnely e destination o ho oy s

slices  the  desttnation shee s atound the Poapbas

r, (S/? ]) 1.0 1 o N b ey
wise direction and oopositine gennit, S ‘
roquoest, wh o nep th g .
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. l.::l\l
& O:t
!
can be only destination conflicts, this simpler model can be viewed as 5 XS nondiagonal crossbar oy
interconncection. (Nondiagonal means that there are no crosspoint switches along the inajor diago- -«'.'.'-_"
nal.) This crossbar model has the same state description as the Ringbus model discussed in the Ve
. . . Lo o . . (N
beginning of section 3.5. ‘The only difference between the two models is in the constraints, ‘The \..:',"
. L . Wy
Ringbus modecl has scgment and destination requirements for cach request and the crossbar model .;::g
. . . . . '
has only destination requircments. ‘Thus the crossbar model has fewer constraints on which 't
requests may be granted shinultancously i.c. it has more immediatcly grantabic request sets and ;.:;-.
. “
fewer request conflicts. i
(W
. . . by
Iherefore nercly by changing what constitutes a grantable request subset (@ request subsct A 4
— , . Q!
in which all requests are grantable), the same computer program can be used to determine the
optimal throughput for both the Ringbus and crossbar maodels. Figure 3.22 shows the optimal "
_— . "y
throughput for sclected probabilitics for the Ringbus and crossbar. ;:
A
I'he optimal throughput of the Ringbus is close to that for the crossbar when pg is large (i.c. O\ .
a8
light loading) and when p) is large.  For most other probability scts, and especially for large p3, }
. .' W
the throughput of the crossbar cxceeds that of the Ringbus by a great deal. ‘This is to be expected M,
o
. . . . . '
since the crossbar does not have any of the segment conflicts which comprisc the majority of the :1:
. ALy
conflicts in the Ringbus. 0
"
‘The chief valuc of the crossbar bound is to allow a comparison between the performance of 4
o . . . . . o)
the Ringbus interconnection scheme and that of a crossbar interconnection, which has the best A
performance achicvable.T The crosshar bound is. of course, a bound on the optimal throughput of 3?; ':
-
the Ringbus, but it is as difficult to compute as the optimal throughput of the Ringbus itsell (since :;-5(‘
both the Ringbus and crossbar models have the same large state space).
N
Rl st
)
&
Aoe
B
N
J'-:w g
\',*-' ;
3
]
~4
RN
LS\
§ 8
:
it
+ Where the interconnection must be circust-switched with S sources and S destinations, -
: ::-‘:n‘
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' Figure 3.22: Optimal throughput for crosshar and Ringbus,
n cach with six slices and one round grant durations
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192 . Ringbus Model o
1
3.5.1.3 Number of Scgments Bound Q
Another simple model of the Ringbus is 10 consider only the segments required by cach L
request and ignore the destination of cach request.  ‘This model captures the cssence of the :?S
. - . %o
Ringbus better than the crossbar model but it still has the siunc large state space and thus is usc- :‘;-
. Cu ]
less for obtaining a practical bound. In order to reduce the size of the state space we consider an ";
b
cven simpler model of the Ringbus. Now we consider only the number of segments required by _
'Y ]
cach request and ignore the particular scgments and destination required by cach request. For § F\-';.'_\
slices, single round grant durations. and ignoring request waiting times. the state description of this ::-Q‘
P
model reduces to et
A
(mgamiymy, -« gy 2) N
e,
—~
where mig is the number of null requests, m;, for 1<i <S8/ 2, is the numbcer of requests requiring ;.? y
VN

AV4
i segments, 0<n; <8, for 0<i<S7 2, and zzm,- =38, The only constraint on granting requests
i=0

is that the total numbcer of segments required by the requests not exceed the number of scgments 3- ,.'
5/2 R0
S. Thus a state is immediately grantable if i m; <S. ‘The total number of states is f.::"
=1 o
N
'HS/Z-/-S —-II_IS +S/2| T4
s s b Gy
. | - 2
For S =6 this model has 84 statcs as compared to the 4003 states of the original Ringbus model i
™
(after symmetry is removed). ad
Figure 3.23 shows the optimal throughput of this model, which we call the number of scg- .
ments model, and the optimal throughput of the Ringbus for various request piobabilitics. The 1'.}::'
el
number of scgments maodel yiclds an excellent upper bound on the optimal throughput for light “;._
. Y . . ..'- a .,
traffic (i.c. pg large) and for p;2>.8. "The quality of the bound degrades as py and cspecially as p) Y
aTm

incicasces. ‘This performance is to be expected since the number of segments model ignores desti-
nation conflicts and the particular scgments required by cach request. ‘These two factors dominate
the performance of the Ringbus for heavy traffic and short request lengths. ‘The bound is worst

for p1=.5 pa=p3=-0. At this point, the number of segments modcl gives a bound of 6.0 on the

optimal throughput, whereas the optimal throughput of the Ringbus at this point is 4.22 (grants

~
N
per round). :'_ .
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Figure 3.23: Optimal throughput of the number of segments model
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)
$
!
An cxamination of the estimated optimal decisions in cach state of the number of scgments $:
model revealed the same general trend as those in the Ringbus model: request subscts with long )
requests (i.c. requests requiring many segments) were increasingly favoured over ones with only ] v
shorter requests, as the traffic increased (i.c. as pg—0). This trend was most pronounced when py 541'
was large, p2=0, and pj small. ' . .f:
We computed the optimal throughput of the number of segments model subject to the two
different constraints investigated carlicr for the Ringbus model: the maximum reward and max- 'E:
imum number of scgments constraints. Our findings again parallel that discussed carlier for the : 5 T
Ringbus modcl. ‘The optimal throughput with the maximum number of scgments constraint was E
indistinguishable (within the :_t.OOS tolcrance range on the optimum from the valuce iteration algo- =
rithm) from the unconstrained optimal throughput. ‘The optimal throughput with the maximum :‘;:
reward constraint was less than the unconstrained optimal throughput in about the same region for :'.::"'

7

2

which the optimal throughput of the Ringbus modcl with the maximum reward constraint was less

than the unconstrained optimal throughput of the Ringbus model. (Sce Figure 3.19 for this latter .
. . -:‘J_ !

region.) NN
f‘:"‘l

A

3.5.1.4 Discussion ;:;'
There is usually a tradeoff between the tightness of a bound and the case of its calculation. e
‘Tight bounds tend to be complex and difficult to calculate while loose bounds tead to be simple :}‘ g

and casy to calculate. Unfortunately, the Ringbus model is very comples as evidenced by its large o

number of states. This suggests that any really tight bounds on the tiroughput of the Ringbus in ‘.
all cases will also be very complex and difficult to calculate. e,
SN

The bounds we investigated are examples of the spectrum of the tradeoff between tightness NN,

L

. . . Lo S
of a bound and its casc of calculation. 'The average number of scgments bound is simple but not .:z\f ‘
very accurate. The crossbar bound is extremely difficult to calculate (as difficult as the optimum :Q*;\"’;

Ringbus throughput itsclf). The main purpose of the crossbar bound is to provide the perfor-
mance of the best possible intcrconnection network for comparison with the performance of the

Ringbus. The number of scgiments bound is the best of the three different bounds investigated,

except when py is large, in which case it is the worst bound.

The number of segments bound has a further significant advantage over the other bounds: it NN

. . ‘ o . PANAY,
yiclds some idca of the optimal decisions in the Ringbus model. Y
N

RAYS
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s
3.6 Optimal Arbiter for Fight Slices !
In this case the state description with grant durations of one round is =
(rirary....rg) \?2
n
where r;= =3, -2, —1,0, 1, 2, 3, or 4 as discussed in scction 3.2, 'This yiclds 8%::16,777.216 - .
states. By utilizing rotational and Aip symmetry in the state description, the number of states can -
be reduced by a factor of less than 16, which still yiclds over 1,000,000 states. Needless to say, 23
this huge number of states makes the pursuit of the optimum throughput and corresponding '_'_::E:
optimum policy very difficult for gencral request probabilitics.  Based on our expericnee with the _.':
value iteration algorithm for determining the optimum throughput with six slices, we concluded o
that such an algorithm would be impractical for cight slices with the computational resources avail- \:.: N
able o us. The optimum throughput can still be determined rather casily for some special cascs :‘.5\ ’
with a small number of statces. ;’ \
Oy
One special case that we investigated is the optimum throughput along the axes of the feasi- g
ble probability region (i.c. only onc request probability nonzero). Figure 3.24 shows the optimum 2§:i
throughput along cuch axis of the feasible probability region. Another special case is the optimum :::;
throughput on a face of the feasible probability region (i.c. with only two request probabilitics ::*“'
nonzero). We did not investigate this case. >
Bounds and appioximations are the only practical methods to obtain some idea of the .:‘\-‘ ‘
optimum throughput for general request probabilitics. However, some idca of the general charie- ;-::‘:
teristics of the throughput is also usctul, We discuss such characteristics in section 3J.6.1. Any of the ok .:j
bounds discussed in scction 3.5.1 can be applied, although the Markovian decision formulation - .
bounds and the crossbar bound arc not very practical duc to their large computational require- .iu
ments. We examine the number of segments bound in section 3.6.2. Onc simple approxintation is .:'_:
to replace all nonnull requests by requests of a single length closest to the mean request length ::._
S 2p HApar6py Hapy . ) "
(given that a nonnull request occurs) /= ——-—~———--———-—_ Another approximation is 9
(1-po) R:.
l"/”zzpqu“"“. We expect this to be an excellent approximation again but it is rather difTicult E:;::‘.
J oo

ax

a7
J

to calculate, ‘The difficulty is in determining qj"‘ in cach of the 8% states: paj is trivial to deter-

minc.

, A'.
» |
P

’( ., .l -l' .I' 'I-
e,
X

1 At best. 16 states - corresponding to 8 rotations and 2 flips - can be reduced 10 one state This reduction fac-
tor can only be attained for cettain states with 1o neneull requests and sero requests of lenpth 4
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198 Ringbus Modcl

3.6.1 General Characteristics of the Optimum ‘Throughput
‘The optimum throughput is a function of the request probabilities i.c. (%' (pi.papiry). In

this scction we consider the general shape of his function.

3.6.1.1 Slope for Very Light Traffic

FFrom cquation 3.10 we have (%= Xp  (vfP —v§?'). For very light traffic, ic. pg=1,
k

v — v =ny where ng is the number of nonnull requests in state k. This can be scen from

cquation 3.13:

00

-

A il S Sl e s
m=0 j !

1 if j is a leftover of state & 1 j=1

< I3 ’P’z . ] ot H N H
For po=1. pi* 0 otherwise and p; 0 j*I (where state 1 is the state with

all null requests). Of course ¢§P' =0. Thus
R v P R P g =g

where state [ is the leftover of state k&, state m is the leftover of state /, cte. until the leltover is

state 1 with all null requests. Thercfore for pg=1 we have

’0'""‘21111("1(
k

Now if p; =8 for some 1<i <S5/ 2 where & is very small and positive and p; =0 for all j#20

and j#i, then

S S-n
Pik :|,,k|<26)"*<1 28 ™
opt opt
‘Thercfore 17" =258 and thus L =25, Taking the limit as §—0, we have 2 —] =28 for
Op; Pi po=l

1<i<sS72
If pg2 =8 where 8 is very small and positive and p; =0 for all j#0 and j#i, then

s -

opt
Therefore 1P =58(1-8)° ~'=58 and thus —-a—’—«zS. Taking the limit as §—0, we have
Pss2

—_
—_——— A

0ps/2 po=1

AT TS S TS TR LTS 55 W 15 T A D T T T S W Sl Wl S T IR \
T N AT S A N A N g A N AT A SN g
:‘M OO A N oL l'..n ..u R DA AT N VA MR > LRSI

te A YA VL gV gty vg ¥

v
4
o

5%%%% \A
>
LR s

q

[ 4
L}

"o
"

Yoy

/

i 'f.;\;ﬂ:—':
LAASAMY

‘f;l‘;(;f;-‘.'l‘ -
PO
S 0 b d L

DARIAN
oy
,".’5‘. Pl

e
’

[
)
[}

) x: ‘: ~.;'."’
: &3, Y

v
»
-

.
v
"t

(4

13

.-
'
o
\

e Yo T Sn I B U]
) 224
O
A VA
kY A T

'1'
v
A4

bl

:. ;(‘
[
5
¢ 57,

Mo
o7,

¥
“r “s



Ringbus Modcl 19

Note that these slopes are reflected in the drawings in Figure 3.24.

3.6.1.2 Shape Along a Ray with Fixed Ratio of Nonnull Probabilitics

For any arbitrary valuc of ' the characteristics of the shape along a ray arc similar 1o those

discusscd in section 3.4.1.2 for four slices.

3.6.1.3 Maxim_um Points

At any point in the feasible probability region, the throughput increascs if p; increasces by
somc positive amount 8. (This may require that the probability of other request lengths decrease.)
Thus there arc no maxima in the interior of the feasible probability region; the maximum must
occur on the boundary. Obviously, the unique maximum occurs at p;=.5 and thc unique

minimum occurs at pg=1.0.

3.6.1.4 Shape Along Cross Scctions

The throughput increases monotonically along any cross section paratlel to the p axis since
ot . . .
-a——>0. (¢ is the throughput.) Along other cross sections, such as parallel to the pyg axis, the
P

threughput may both increase and decrease. (For example, in Figure 3.17 the throughput

decreases as p3 increases for py=.2 and py=.1)

3.6.2 Number of Scginents Bound

To obtain sotnc idca of the optimum throughput of the Ringbus model with § =8 and grant
durations of onc round for general request probabilitics, we calculated the optimum throughput of
the number of scgments model for § =8 with sclected request probabilitics. ‘Table 3.3 lists the
results. which we obtained via valuc iteration, to within £.005 of optimum. For comparison,

Table 3.3 also lists the optilmum throughput of the Ringbus modecl for the request probabilitics in

‘Table 3.3 for which it is known. ‘These request probabilitics (for which /% is known) all

correspond to points along the axes of the feasible probability region. Note that ¢"4mber of scements

is a poor bound for 1% for large p. as observed for $ =6 in scction 3.5.1.4. Otherwise, we expect
that ¢"umber of segments i o reasonable bound for 1!, as observed for S =6.
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200 Ringbus Modcl
Request Probabilitics Number of Segments Model Ringbus Modcl

1 - P - },3 _—_p: T prumberof segments T[T et 7
0.2 0.0 0.0 0.0 320 296
04 0.0 0.0 0.0 6.40 4.94
0.5 0.0 0.0 0.0 8.00 5.63
0.0 0.2 0.0 0.0 309 243
0.2 0.2 0.0 0.0 5.23 ?
0.0 04 0.0 0.0 3.99 310
0.0 0.5 0.0 0.0 4.00 32
0.0 0.0 0.2 0.0 1.99 1.96
0.2 0.0 0.2 0.0 3386 ?
0.0 0.0 0.4 0.0 200 2.00
0.0 0.0 0.5 0.0 2.00 2.00
0.0 0.0 0.0 0.2 1.51 1.32
0.2 00 0.0 0.2 375 ?
04 0.0 0.0 0.2 499 ?
0.0 0.2 0.0 0.2 3.00 ?
0.2 0.2 0.0 0.2 4.00 ?
0.0 0.0 0.2 0.2 2.00 ?
0.2 0.0 0.2 0.2 329 ?
0.0 0.2 0.2 0.2 2.86 ?
0.0 0.0 04 0.2 2.00 ?
0.0 0.0 0.0 04 199 1.90
0.2 0.0 0.y 04 3.20 ?
0.0 0.2 0.0 0.4 2.67 ?
0.0 0.0 0.2 0.4 2.00 ?
0.9 0.0 0.0 0.6 2,00 2.00
0.2 0.0 0.0 0.6 2.85 ?
0.0 0.2 0.0 0.6 2.50 ?
0.0 0.0 0.2 0.6 2.00 ?
0.0 0.0 0.0 1.0 2.00 2.00

Table 3.3: Results from number of segments model for cight slices

An cxamination of the estimated optirmal decision in cach staie of the number of scgments
model revealed that the nuinber of states with non-maximum reward decisions increased as the
request probabilities became dominated by short (i.e. length 1) and long (i.c. length 3 and 4)
requests. Otherwise the number of states with less than the maximum reward was quite smuall. In
fact. as long as py and p3 were both small, the estimated optimal decision in cach state almost
always gave the maximum reward. The optimal throughput of the number of segments model with
a maximum reward constraint was very close to the unconstrained optimal throughput except .
when there were mostly short and long reqguiests. OfF the request probabilities isted in Table 3.3,

the degradation caused by the maximum reward constraint was greatest (0.40) for py=.4, py--0,
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Ringbus Model 201

p3=0, and py=.2). On the other hand, the optimum throughput of the number of scgments
maodel with a maximum number of scgments constraint was indistinguishable from the uncon-
strained optimal throughput ¢™4meer of scgments gor ol the request probabitities listed in ‘Table 3.3
except for py=.4, py=0, p3=-0, and pg-=.2. This comes as no surprise since the cstimated optimal
decision in cach state in the unconstrained case almost always utilized the maximum number of

scgments.

These observations suggest that the trends in the optimal decisions for the Ringbus model
for § =6, discussed in scction 3.5, continue for S =8. In particular, these observations suggest that
the maximum reward constraint has cven a greater cffect on the optimum throughput of the
Ringbus for 5 =8 than for S =6, reflecting the sharper contrast between shoit and long request
for § =8. '
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s
3.7 The Symmetric Ringhus With More Than Eight Slices “::
;! £
Any pursuit of the optimum throughput and/or optimum policy for more than cight slices -
and generial request probabilitics scems hopeless.  As the number of slices increases nuch past
cight, there cven begin Lo be too many states to compute the optimum throughput on the faces oy
and along the axcs representing requests ot length less than 872, (The number of states along ,:,
. . (3
these axcs is 3¥ where S is the number of slices. Only 25 states are required to compute the (8]
optimum along the axis representing requests of length S/ 2. ‘This number can be reduced further o
as we discuss in section 3.7.1.) Of course, the general characieristics of the throughput as discussed : ?‘
. . . . . .. . LY
in section 3.6.1 remain the same for more than cight slices. In addition, the bounds discussed pre- S
WY
viously. particidarly the number of scgments bound, can still be cffectively applicd (although the b
number of states incrcases rapidly above cight slices for the number of segments bound). '?-'"a
A
l'-. ’
g . . ge . . * . '.'
X710 Throughput as a Function of the Number of Slices for Some Special Cases v
Loy
‘T'wo special cases for which it is casy to determine the optimum throughput of the Ringbus -
ior a large number of slices arc :::\
(i) at an cxtreme point of the feasible probability region i.c. at a point where p; =.5 and p; =0 e
. “ )
for j#i for some 0<i<S$/2, and A
(1) along the axis corresponding to requests of fength $/2 e p;=Qfor i=1.2,--- ., 8§72~ L ._ ¢
s ’ a
Using rotational and tlip symmectry, the 2% states in case (i) can he reduced by a significant ::.'-‘ )
fraction. K.
“_\’ {
Onc cxtremie point of particular interest in case (i) is py=.5, where the maximum throughput PNy
occurs. We can casily obtain bounds on this maximum throughput for a large number of slices as P
follows. o
. . o i
l.ct the number of requests in a round in the clockwise dircction be denoted by ., and the o
Y
number of requests in a round in the counterclockwise direction be denoted by n., NV !

(New + Heew =), Since all the requests are nonnall and of length onc, we can grant at least

MAX (N M) Tequests in a round. Imagine an arbiter which operates by granting cxactly

MAX (N Neew) TOQuEsts in cvery round. Since an optimal arbiter can grant at least this number of

T L L
:.:.:i?,‘:

requests in every round, the throughput of the Ringbus with this clockwisc-counterclockwise

arbiter (which we term the cw-cew arbiter) thus gives a lower bound on the optimum throughput

P A
!:l;b !

P

of the Ringbus for p| =.5.

o

Lo ol W
&

e
. XN

h ]

An obvious state description of the Ringbus with the cw-cew arbiter is

s
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However, we can reduce the number of states by utiliving the symuncetry between the clockwise
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Ringbus Model 203

and counterclockwise requests. ‘Thus we consider instcad the state description
(m.n)

where m = max (Mey Neey) (. m2S872) and m +n = 8. IUis convenient to number the states
withn, n=0,12---,572 The reward in cach state is m. 'The one step transition probability

from statc (m.n) to state (m’,n’) is given by

N-n
1 S—n S—n ‘o
5' “n'-n| + ( n' ” nw<s/2
Pan'= S—n
’ 1 S—n [ '
. l'2‘| llso/z . n :.S/2
where
1
a lT'Ta(LZ;! if ¢ and b arc intcgers and =0, 1, ..., a
b |T|0. otherwise

This cxpression for p, .- may be understood as follows, ‘The reward in state (m.n) is § —»: hence
the next state has S —n new requests. There are two ways for this next state to be (m'.n’) if
n'<sSs2:
1) n'--n (where n'>n) of the 5 - n new requests are in the same direction as the n old
requests inherited from state (m,n) and the state is not "Nipped” (i.c. S --n'>n’).
2) n' of the $ —n ncw requests arc in the opposite direction as the n old requests inherited
from state (in.n) and the state is "flipped” (i.c. n'<S —n’).
There is only onc way for the next state to be m',n’ if n’ =35/ 2 since the state is never "flipped”
in this casc,
The throughput of the Ringbus with the cw-ccw arbiter is given by

(T = .522'” (S —n)

n=0
where o, is the steady state probability of being in statc «. ‘The w, satisfy v, = Vﬁfﬂ,,’p,.’_,,.
n'=0

s
n=2012..572 and vzzw,,'z .
n'=0

We computed 1" =™ for various valucs of S the results are listed in ‘Table 3.4 along with

the optimum throughput of the Ringbus for 4, 6, and 8 slices. Note that the lower bound given by

O
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1™ 7Y s equal to the optimum throughput for 4 slices. The lower bound is progressively less

tight for 6 and 8 slices. We expect that this trend continues as the number of slices increases
cw —CCW

further, As $—00, an avecrage of 2/3 of the requests are gramodt. hence B — 3 as the

figures indicate in ‘l'able 34.

. ow —cew opt ooy il
Y S 5 s |
4 . 2833 2.833 0.708 0.708
6 4154 423 0.692 0.705
8 5473 563 0.684 0.704
10 6.792 ? 0.679 ?
12 8.112 ? 0.676 7
14 9433 ? 0.674 ?
16 10.755 ? 0.672 ?
18 12.078 ? 0.671 ?
20 13.403 ? 0.670 7
22 14.729 7 0.669 ?
24 16.055 ? 0.669 ?
26 17.382 ? 0.669 ?
28 18.709 ? 0.668 ?
30 20.038 ? 0.668 ?
R Y 21.367 7 0.668 ?

Table 3.4: (™ 7Y for various valucs of S

We can obtain an upper bound ca the optimum throughput of the Ringbus for p;=.5 and
S cven by considering only destination cenflicis. Number the slices from 1 to % in the clockwise
direction around the Ringbus. Odd numbered slices only request cven numbered slices and cven
nunibered slices only request odd numbered slices. ‘Thus, ignoring the segment conflicts, the
Ringbus is cquivalent for p;=.5 to two S/ 2XS8/2 crossbars - one conaccting odd sources to
cven destinations and the other connecting cven sources to odd destinations. Each of these

crosshars consist of .57 4 cells as depicted in Figure 3.25.

t For large S, if M 1equests are granted in the current round, then the average number of reguests granted in
the next round. 1, is the number of leftovers from the current round plus half of the new requests that arrive

) , . m , ,
in the next round ie. M = (S —m)+ —-. In steady state m == m . henee M == 3-34

g G g e il o T R CRL R S ST
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Figure 3.25: A crossbar ccll

Suppose we ignore the interactions between cells. (The cells interact via conflicts at the destina-

tions in common with adjacent cells.) FEach cell is thus independent of all the others. Under this

condition, it is casy to cstablish that the throughput of a cell is 1..0 = —. 'Ihe total number of cells
ghp cell 4

is S/ 2, hence

o<

~ |
&jw

7
= =8 '
8

Considcring that this is also a bound oa the throughput of a crossbar with py==.5 and §

opt
slices, this is a poor upper bound for the Ringbus. Examining ‘Table 3.4, it appears that ——

dccrcases monotonically with 8. ‘This leads us to make the following conjecture.

Conjecture

. et (&' denote the optimum throughput of a S slice Ringbus with request probabilities p;S.,
i=—(872-1), «-- . 8/72if § iscven, and i=~(S -1V 2, - (S=1V2if 5 is odd. l.ct

X (&1 denote the optimum throughput of a S # 1 slice Ringbus with request probabilitics
b
) .
' S 1 =0.1,2, - 8/2--1if§ iscven
'
! pit =1pd 2. i=28/2
0‘ i=S/2 ‘/‘ l
R and
4
1S Gl p 1i1=0,1,2, - ($ =172, ifS isodd
A I o
. Pi " {0, otherwisc.
: o
Then, assuming grant durations of a single round, S 1 < 4;; . Note that this generalizes to
‘ + A
)
K
X

AT NP T NS TR NN N n S e tn T e et a T N e TR T R AR L0 TR s s Ty P T T e vy = o
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Unfortunately, this conjecture scems difficult to prove. If it is true, then a much better bound on

the optimum throughput of the Ringbus for p;=.5 is

4+n ¢
—_— 2” —

23833

(P, < 1+§

for an=1 2, 3 --».  For Jarge 8§ the  conjecturc  leads o

& i &
~ < 3 =704 < re =.705 < T <.708.

It is not casy to obtain good lower bouhe!vhm- 1 other cxtreme points p; =.5 (i#85/2)
since the possibility of requests in the same direction conflicting introduces additional complexity.
One way (o obtain a lower bound on the optimum throughput for p; =.5, 0<i <S8/ 2, is to con-

struct a Ringbus in which all requests arc of length 1 by deleting the 7 — 1 slices between cvery i
. » . - . . . IS' . .
slice. Of course, this is only successful (although it can be modificd) if — is an integer. As an
]

cexample, consider S =8 and py—.5. After dclcling‘f"“y sccond slice, we obtain a 4 slice Ringbus
with afl requests of length 1. ‘The dhroughiput for such a Ringbus is 2.833, hence a lower bound on

the throughput of the cigiit stice Ringbus with py =5 is 2.833. "the exact throughput in this case is

3.22 (sce Figure 3.24).

'or some extreme points 1% =2, ‘This is obviously true, for example, for ps,2=1. It is also

+

truc for p; =.5 when -2| =2 (S cven).
{

The optimum throughput along the S/ 2 axis is casy to calculate for large 5 since the
number of states can be greatly reduced from the 25 mentioned carlier. If the only nonnull
requests arc of length S/ 2, it suffices for a statc description to merely describe the number of

pairs of slices with zcro, one. and two nonnull requests, where two slices 180° apart on the Ringbus

comprisc a pair. ‘Thus the state description is

(ng.nny)

where n;, £ =0, 1, or 2 is the number of pairs with /i nonnull requests and ﬁn,: S/ 2 (S cven).
i=0

The total number of states is ’S:jgz = (S/2+ 2)2(3/ 2+ l).

A lower bound on the optimum throughput along the S/ 2 axis can be obtained casily by

ignoring leftover requests. Certainly,
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1°P>2-Prob(at lcast 1 pair has 2 requests) + L]
1-Prob(at Icast 1 pair has 1 request and no pair has 2 requests)
1P >2-Prob(at Icast 1 pair has 2 requests) -+
1— Prob(at lcast 1 pair has 2 requests)— Prob (no pair has any requcsts) Byt

Now Prob(at lcast 1 pair has 2 requests)=1 — Prob(no pair has 2 requests) =1 —(1 — ps/zz)S/2 and N
Prob(no pair has any requests) =((1--ps, ;)z)sn. thus :\-\::

17" >2 (1 —ps/zz)sn—(l —PS/I)S- ™~

‘The throughput as a function of & gives some idca of the scalability of the Ringbus. ‘The 3
1
throughput varics with the traffic, as reflected by the values of the p;. ‘This latter factor affects the

throughput the most: with pg=0, the throughput can vary from 2 to somewhere between %S and .A.:}f.
%S. ‘T'he scnsitivity of the throughput to the distribution of request lengths is perhaps best illus- Ca

trated by the bound :5-‘; from scction 3.5.1.1. N
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3.8 ‘The Performance of the Concert Ringbus ;',c'
In this scction we investigate the performance of the Concert Ringbus and compare its per- 4
formance with that of the Synunctric Ringbus. (We, of course, have o specify some arbitration ;i‘
scheme for the Symmetric Ringbus. We do this shortly.) ‘The Concert Ringbus has asymmetrical R?\
access paths, and a rotating priority arbitration algorithm. as discussed in section 3.1, 'The investi- .E
gation and comparison consist of three parts: _ :J
1) We dcetermine the cffect of the asymmetrical access paths by comparing the optimum "
throughput with asymmctrical access paths (i.c. the Asymmetrical Ringbus) to the optimum ?- ‘:
throughput with symmetrical access paths (i.c. the Symmetrical Ringbus). ;.'\) ,

3)  We determine the eftect of the rotating priority arbitration algorithm by comparing the o
throughput with this algorithm for the Symmetric Ringbus with the optimum throughput for : .‘
the Symmetrical Ringbus, ;'_ 1
A
) We determine the cffect of both the asymmetrical access paths and the rotating priority arbi- &"(i‘
tration algorithm (i.c. the Concert Ringbus) by comparing the throughput with these to the Ty

et

optimumn throughput with symmectrical access paths.

We consider only four slice Ringbuscs. ‘TThere arc, unfortunately. too many states to consider

L

Markov chain modcels for six or more slices. The state description with the asymmetrical access

paths in part | remains AL
& f~
DO
(rira - .ry) A
&
. - Ky
where 7, - (S/72--1), -, =10, L -+, S72 but flip symmetry can no longer be utilized to e
reduce the number of states because a request in the counterclockwise direction requires more S
segments than a request of a similar number of hops in the clockwise direction. Thus, for § =4 the _—
number of states is 70, an incrcase of about 86% above the 43 states for the Symmetric Ringbus. A s
simitar increase for S =6 would put the number of states at about 7400. This number may not el
seem all that unrcasonable, However, we felt it was not worth pursuing part I for % 6 if we RS,
could not also pursuc parts 2 and 3 for S 6. The state description with rotating priority is '.l_\::‘_:'
(rirys - rs) o
o
where jp, - (p + k) mod S is the priority of the request at slice 7 and r, is the same as betore, For -;.;,s.
» - . R 4
S -4, the number of states for synumetrical access paths is 129 and the number of states for asym- .: w',f
metrical access paths is 214, Similar incrcases for - 6 would put the number of states above \'..q
h
10.000. which we consider to be teo many states, A
d
We could have pursaed parts 2 and 3 tor larger vadues of S via simalaton, Tn fact, we did SRV
St
do tus for S 8 the resulis are reported 1 Chapter 40 Howeser, the simulations reported m ‘.-?a_‘.
.- g
\I'\".ﬂ
s'_\": p
\-'\-“.\
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o
Chapter 4 arc for the entire Concert model, not just the Ringbus as is our focus here. For exam- . X
ple, the simulations reported in Chapter 4 assume grant durations of nine rounds and arbitration -
times of (wo rounds; we assume single round grant durations and instantoncous arbitration here. G
Part ¥ cannot be carried out via simulation since optimization is impractical via simulation, b‘ :
&y
3.8.1 The Effect of Asymmetrical Access Paths -
Onc factor complicating the comparison of the optimum throughput with asymmetrical i\:
access paths with the optimum throughput with symmetrical access paths is that users may adapt j::-
their programs to suit the topology. As a result, requests may be biased in favour of the clockwise v-
dircction in the former case and unbiased in direction in the latter case. 'T'o avoid biasing the com- t‘
parison, we present the results for various asvmmetrically weighted and symmetrically weighted :r;
request probabilitics for both asymmetrical and syminetrical access paths. f::
FFigures 3.26, 3.27, and 3.28 show the optimum throughput with asymmetrical and symmetri- :-'3:
cal access paths for p _(=p. p1=.5p1. and p =0 respectively. (p .y is the probability of a '
request of one hop in the counterclockwise direction.) Note that the optimum throughput with :E:'j-
asymmetrical and symmetrical access paths is identical for p _y =0: hence only one set of points is ‘:'
shown in Figure 3.28. As expected, the difference in the optimum throughputs for asynunctrical EE
and symmetrical access paths increases as p _y decreascs. o
T
3.8.2 'The Fffect of (he Rotating Priority Arbitration Algorithm ‘.:'_\
Figure 3.29 shows the optimum throughput of the Syminetric Ringbus and the throughput of -.j‘_:
the Symmectric Ringbus with the rotating priority arbitration algorithm used in the Concert
Ringbus. For very light traffic, the throughput with rotating priority is close (0 the optimum. lFor :f::\::
all other traffic, the throughput with rotating priority quickly dcteriorates with respeet to the ::;Z:.
optimum. 'The maximum throughput, at p;=.5, with rotating priority is .42 lcss than the optimum ::“:;.
throughput. For p;=1 the deterioration is cspecially severe. Fven though two requests can be ; \
granted without conflicting, the rotating priority algorithm only grants one request. “T'he rcason for :::::‘
this stupidity is that slices arc assigned consccutively decreasing priovitics in the clockwise dircction :S_::j:
from the highcest priority slice. Since no request can be granted which may conflict with onc at a ;J.
higher priority, a long request currently blocked by a request granted by a higher priority slice can .:_'
nevertheless prevent an otherwise grantable request from being granted duc to a conflict with the _‘_
higher priority long request. An cxample of such a situation is shown in Figure 3.30. ‘\__
8
R
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P, is the priority O
1 . . . ¢
of the request at slice i AN

Figure 3.30; Example of a disadvantage of the rotating priority algorithm o

Slice 1's request, which may be granted because it has the highest priority, conflicts with the lower ~
Ny

. . - - - Y . . y \
priority slice 2's request, hence slice 2's request cannot be granted. Towever, slice 2°s request con- S0

Y
Jicts with the lower priority slice 3's request and thus slice 3's request cannot be granted cither, R

cven though it is otherwise grantable. An obviouy, fix to the problem is to stagger the slice priori-

tics as shown in Figure 3.31.
[]
e

Figure 3.31: Staggered request probabilitics

The consecutive assignment of slice priorities around the Ringbus will also obviously lcad to T
throughput degradation for a larger number of slices, such as 5 - &, and for cases in which clock- N
wisc requests of greater than one hop predominate. The prioritics can be staggered in a manner .‘vl,:;
similar to that in Figure 3.31 to reduce this degradation. Interestingly, it is casy to modify the Con-
cert Ringbus to effect such a change to the assignment of the slice prioritics. A new arbiter priority R/
ROM (a 2K X8 ROM) is all that is required. Y
A diftcrent, but stll simple, improvement to the throughput of the Symmetric Ringbus with ;'.:’:
the rotating priority algorithm is to change the direction of the rotation. When the prioritics are "':
updated in the Concert Ringbus cvbiter, the highest priority is assigned to the next slice with a ,::\:'_\
pending request in the counterclockwise direction from the current highest priority stice. Clockwise :',::::::
RO
NN

N O A R B S e L
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rotation of the priority yiclds better throughput (assuming the slices are assigned consceutively
decrcasing  prioritics in the clockwise direction from the highest priority slice). 'The maxitnum
improvement in throughput by reversing the priority rotation from counterclockwise to clockwise
is .10, which is attained at p)=.5. As bctore, a new arbiter priority ROM is all that is required to

implement clockwisc priority rotation.

3.8.3 The Effect of Asymmetrical Access Paths and the Rotating Priority Arbitration Algorithm

Figures 3.32, 3.33, and 3.34 show the throughput with asymmetrical access paths and the
rotating priority algorithm, the optimum throughput with asymmetrical access paths, and the
optimum throughput with symmetrical access paths for p .y =py. p_;=.5p,. and p _ ;=0 respee-
tively. As in Figure 3.29, the rotating priority algorithm imposes a degradation in throughput (as
comparcd with the optimum throughput with asynunctrical access paths) that incrcases as py or
p> or both increase. For py=p _; =.5, the degradation is .30 or 16%. Again, the degradation is
especially severe for py=-1.0.

The throughput degradation is mostly attributable to the rotating priority algorithm if ps is
large and is mostly attributable to the asymmetrical access paths if p and p _ arc both large and
if the request probabilitics are the same with symmetrical and asyinmetrical access paths. (This
comparison can be misteading since the requcest probabilities would probably have a strong clock-
wisc bias in dircction in any Ringbus with asymimetrical access paths and would probably be rela-
tively unbiased in any Ringbus with symmetrical access paths. Sce the paragraph at the beginning
of section 3.8.1.) The ihroughput degradation attributable e the asynunetrical access paths dimin-
ishes as p _—0 if the request probabilities are the same with symmetrical and asymmetrical access

paths. (‘The same parenthetical note applics o this statement t0o.)

We cxpect all the trends obscrvable in Figures 3.32, 3.33, and 3.34 to be accentuated with

larger valucs of §.
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0
3.9 ‘The Ringbus in the Concert Environment ;;N
A
So far in this chapter we have considered the Ringbus model in isolation. Now we consider
some of the differcnees between this anificial environment and the Concert environment. We dis- \ ,\
cuss the effects that these difierences have on the operation and perforinance of the Ringbus. In :::'.-'
scction 3.9.1 we discuss the details of the Muitibus-Ringbus connection and develop the hooks for P
the integration of the Ringbus model with the Multibus models in Chapter 4. i
The major differences between the artificial environment of the isolated Ringbus and the :{:-\
Concert environment arc: :,:.3‘.
1) the duration of the grants, s
2) the arbitration time, %}_
J) the dead time between successive Ringbus requests, and :,E:_
4) global register accesses. :.&
The duration of a grant is the total duration for which Ringbus segments arc allocated o a - A
request.  As reported in section 3.3.2 of Appendix A, this duration is 9 or 10 arbiter clock cycles - :’:.t
i.c. 9 or 10 rounds - for rcads and writc accesses when the arbiter clock period is 200nsce. Other :'_::-".'_':
than for a geometricaily distributed grant duration with a mean of 10 rounds, we did not investi- :,\
gate the isolared Kingbus model for such fong grant duradons.  Furthermore, this case with a < "
mean grant duration of 19 reunds applicd tor 8 =4 and symmctric access paths. Thus grant dura- ::i:-
tiens in the Concert environment are much longer than we considered for the isolated Ringbus -:.:C.
model except in one special case. N
N
As discussed in scction 34, we expect that the cftect of the long grant durations on the sy
optimum performance of the Ringbus can be estiinated fairly well from the optimum throughput . ::,\ ‘
with a deterministic grant duration of one round and cquation 3.18. 1t should be possible to csti- ‘:j
mate the cficet of long grant durations on the throughput for arbitration algorithms other than the .-'::-
optimum, by similar mecans. We expect then that the performance of the Ringbus is initially quite ~ :
sensitive to the duration of grants and decrcases rapidly as the duration of grants increascs. ;;j
The arbitration time (or nore precisely, the arbitration delay) can be divided into two com- ::.::::E
poncnts. At some point during the arbitration time the arbiter decides (or can be regarded as :
deciding) whether or not to grant a request. ‘The rest of the time is a delay gathering request ':\-;.;
information before the decision and a delay communicating and implementing the decision. Thus E.“'.c\
the arbitration time may be treated by assuming instantancous arbitration time and adding the ”E::\
appropriate grant implementation delay to the request interarrival time and the appropriate grant :\-:;;
implementation delay to the graat duration, Increasing the reguest interarrival time (i.c. increasing ; '.:‘
Po) and increasing the prant duration deercases the throughput, 'The exact effect of adding these A _
delays depends on the magnitudes of the delays and the paramcter values for the requests and :,{\'C*:
PV
i
\;:i'j
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494 44|

grant durations. ‘The arbitration delay in Concert is two rounds - once round of request gathering

L,
vy

delay and onc round of grant implementation delay. For light to medium loading the resultant
additional clock cycle of request interarrival time will cause little change in pg and hence will have

little ctfect on performance. Likewise, the effect of the addidonat clack cycle of grant duration will

TEXTY

be small since grant durations arc alrcady quite long in Concert. ) ’..:l'
)
The dead time between successive Ringbus requests is the minimum time between the end ~
of a Ringbus grant and the next nonnull request gencrated from the same slice. In our isolated
Ringbus model we assumced a dead time of zero. THowever, in Concert there is a dead time of 2 or :;
3 tounds. (T'he dead time corresponds to the minimum value of l,f"”“" which is reported in sec- ‘_;?',':
tion 3.3.2 of Appendix A. We define I,fm"‘"' and discuss the details of the Multibus-Ringbus :
interaction in scction 3.9.1)) Since the dead time is relatively simall compared to the total duration : ;z
of a grant, we do not expect the dead time (o have a large dircct cffect on the performance of the '}:
Ringbus as comparcd to that predicted by our isolated Ringbus maodels. Of course, there will be :{:{
an indirect cffect since the dead time portion of the processing time is not well approximated by A
the geometric distribution which we assume for the processing time in our isolated Ringbus ::_21
maodcls. ‘The consequence of the dead time is that the mean processing time must be at lcast 2 or :.i.j y
3 reunds, and thus pp> % . 'This corresponds to light trafTic in our isolated Ringbus modcls. ' :-:::;
We have already discussed global register accesses. Accesses to glubal registers on a slice dif }:::._
ferent from the slice originating the access can be treated as special global memory requests. ::.r
‘Accesses o global registers on the same slice originating the access cannot be trcated in this f_:z
manner. Instcad, we simply ignore such accesses.  We expect global register accesses to be infre- e
quent in normal operation, so the ¢ffect of ignoring such accesses in our isolated Ringbus models ey
to bc minimal in most cascs. ';‘\:?
Note that there is additional information available in the Concert environment which could \.3“
conceivably allow the Ringbus arbiter to achicve better performance. In Concert, the only infor- "R“‘f !
mation available to the Ringbus arbiter is the type of request or grant present at cach slice. ‘The ‘,-'_.:-: \
arbiter is able to infer from this information the duration that the request has been pending or ‘S::::::
that the grant has been in progress at cach slice. Other information avatlable in the Concert \:‘{;
cnvironment, but not available to the arbiter, is the number and type (i.c. Multibus or Ringbus) of "-,"
requests in cach Multibus queue and the waiting time so far of cach request. :f-."'_
S
Since atl other Multibus activity is blocked during the entire duration of a Ringbus access - r\:‘{
cven during the period which the aceess waits for use of the Ringbus - the arbiter could conceiv- ..;:}'
ably give priority to Ringbus accesses blocking a large number of Multibus accesses and therchy L
improve the overall throughput of Concert, :'_'.“_:'_:'f
RN,
Finally, note that although the arbiter clock period does affect the performince of (he :'
| S

T T ok
\\'.N:- \',,‘-\

2
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Ringbus, the effect is not as large as one may expecet. ‘The reason is that a considerable fraction of

the duratien of a Ringbus grant is approximately constant independent of the arbiter clock period.

3.9.1 ‘T'he Equivalent Model of the Ringhus

As discussed in section 1.3.5, the Ringbus can be replaced by an equivalent model for cach
slice-Ringbus connection. 'The cquivalent model for cach slice-Ringbus connection is the Ringbus
access time distribution as scen by that slice. In determining these cquivalent models of the
Ringbus, we assume that cach slice has been replaced by its single processor equivalent with some
processing time  distribution, with mean i;‘m""". and some Ringbus destination probabilitics
pMBr i (§/21) coo, <112, -+, 0r §/2. (5 is the number of slices.) We assume
that all of the single prbccssor cquivalent modcls arc identical and that the Ringbus is symmietric
with respect to cach slice. Under these latter two assumptions, the cquivalent models of the
Ringbus arc identical for cach slice-Ringbus connection and thus the Ringbus is completely
characterized by onc cquivalent model.  As noted in scction 1.3.5, this mcans that only onc

Multibus-Ringbus connection need be considered during integration.

‘The single processor equivalent of the Multibus and the Ringbus cach perccive a Ringbus

access cycle in a different way.  IFrom the point ot view of the single processor equivalent, a

Ringbus access cycle consists of a processing time, denoted by II,M"‘"“'. and an access time, denoted

by larn. t.gp includes the waiting time, if any, of the Ringbus request generated by the access.

The probability distribution of IpM""‘"' incorporates the Maltibus waiting time.  Figure 3.35 depicts

the point of view of the single processor cquivalent.

Ringbus

aceess | I I
signal e t —,|.___4_ {Mbcav
uRB p

(active low)

Figure 3.35: Point of view of single processor cquivalent

From the point of view of the Ringbus, a Ringbus access cycle consists of a processing time,
& waiting time, and a grant duration, all defined relative to the arbiter clock. We define the grant
duration as the total duration for which Ringbus scginents arc allocated to the Ringbus request
generated by the access: we denote the grant duration by d. We define the processing time as the
interval hetween the termination of a grant and the commencement of the following grant in the
absence of conteniion in the Ringbus. We denote this interval by /,,"’”“"' to indicate the processing

time as seen by the Ringhus. Finally, we define the waiting time to be the duration that a grant is
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delayed duce to Ringbus contention; we denote it by wgpy. We measure I,f”’“"’. wep. and d syn-
chronous to the rising cdges of the arbiter clock. Figure 3.36 depicts the point of view of the

Ringbus.
i EnipninBnly
Ringhus ‘RM‘-‘-——-I-—WRB——-IL—-——— d ————-I

gbus ) l
request [
sgnart _Jl 1| .
{

Figure 3.36: Point of view of Ringbus

We now combine the points of view of the single processor equivalent of the Multibus and
the point of view of the Ringbus. Central to this combination are the facts that 1) the Multibus
operates asynchronously with respect to the Ringbus arbiter and 2) the arbitration for the Ringbus
tukes some nonzero time. We define £, as the time required to synchronize a Multibus request
for a Ringbus access with the arbiter clock. More preciscly, #,, is tic interval between the arrival
of a request at the Ringbus aibiter and the next rising edge of the abiter clock.¥ We define Yarb
as the arbitration delay of the Ringbus arbiter, (15,4 i some integral multiple of the arbiter clock
pertod.) In addition, we define £,., as the interval between the initiation of a Ringbus access on
the Multibus and the arrival of the corresponding Ringbus request at the Ringbus arbiter. £y,
reflects the time that a processor iakes to put valid signals on the Multibus once it has seized con-
trol of the Multibus and the time that the RIB takes to decode these signals. (We consider an
access on the Multibus to initiate when a processor seizes controb of the Multibus and to terminate
when the processor relcases control of the Multibus. Sce section 2 of Appendix A for details))
Through various quirks in the timing of Multibus and Ringbus signals, the termination of an access
and the disassertion of the Ringbas request at the Ringbus arbiter occur at approximately the
same time. (Sce section 3.3.2 of Appendix A) We assume this to be the case heie and thus we do
not introduce a corresponding 4.4 "

The combined points of view of the single processor cquivalent and the Ringbus are pictured
in Figure 3.37 along with the quantitics just defined.

F These signaly are drawn as aztive low o patalie! the signals in the actual Coneert system
$ 1o this seetion we ignore deliays that wouid normalts be intreedeced (o ningate metastability: problems and as-

sume that the wbater inputs are sapled on every nsmg edge of the arbater clock
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Figure 3.37: Combined points of view of single processor equivalent and Ringbus
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Note that the access time of the single processor cquivalent and the duration for which scg-

.
(]

Iy

ments arc allocated in the Ringbus - i.c. the grant duration - arc out of phase. Of course, the

actual period for which the data transfer occurs is the same for the single processor cquivalent and

a2l
i A

the Ringbus. We denote this time by {4, . ‘The arbitration delay skews the total time allocated to

b
the access in the respective worlds of the single processor cquivalent and the Ringbus. . ;ﬁ
Taking means, we have i;,””“’"+ laRB = i,," Besv g opp +dd and thus
’ . WA
R e - U - —_ - - ey - W = ={nom) . . o
llf‘"“"'_ l,f’""‘" +lpy  Wrp—d = /,’,‘”‘ Wy gamem) 3 ¥ where 157 is the mean Ringbus access \::_
.
time when there is no contention on  the Ringbus .. when wiy =0, Note  that :": =
Y.
“(norm) _ 7 - - " ~ Y
LRB = Usars + lateh + Larb * Tirans - NS
&’l.
The inputs to the cquivalent modet of the Ringbus are the probability distribution of I,’,""”"’ -
and the Ringbus destination probabilitics p#7. ‘Ihe output is the probability distribution of \' s
tag- The inputs to the actual Ringbus model are the probability distribution of l,f‘"""" and the f::~,_'

b
1]

hA

M Beqgv

Ringbus destination probabilitics, p; The output of the actual Ringbus model is the

Y
MBeqv ., (norm) rev e MBegy rev __ prev ’
) "¢ lakB™ " — df if Iy ™t ’tlurlZ‘Ip ~ lirans :"'
t More preoscly, we have (KA M B . row ]
scly, o - or . %
r lap #¢if Ip s Lstart <d” “Airans Y )
: _ : . . . ]
where € is the arbiter clock period and the supersenpt prey denotes the quantities (rom the previous Ringbus N
access. If ,pMIlcqv+ Lturt <MY -y ,,',‘;,V‘ then 2 new Ringbus request arrives at the Ringbus arbiter belore o
the grant of the previous request has been disasserted. This previous grant must be disasseried before the new
request can be arcepted by the arbater, hence the new grant follows the old by the arbittation tme and one en- :
:
tire arbucer clock cycle for latching Iy # ¢ is the dead time menponed carlicr, -
._:\-:
-.'\'.
. "\'. g
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throughput, or alternatively, wyg. ‘The two are related by

Y 8

4 wWpp d d

‘;‘RT;JV
[
where g is the average number of new or continuing grants per clock period (i.c. round). Now to

say anything morc about the rclation between i,f”‘"v. pMBew and wrp we need to consider a

specific Ringbus model. We, of course. assume the Ringbus model discussed in this chapter.
Specifically, we do the following:

1) We approximate the probability distribution of If""‘" by a dixcrete geometric distribution

with the same mcan. ‘thus pg in our Ringbus modcl can be computed from the relation
po i . . .
—l—_-_p-o = where ¢ is the arbiter clock period.

2) We set pj—pMPw i-—($/72-1). -« 1.1, -+~ _or $/2 for the other Ringbus
request probabilitics.

3)  We sct the grant duration cqual to d. We could just as casily allow geometric or arbitrary
discrete probability distributions for the grant distribution provided that the Ringbus model
allowed such distributions. We assume a deterministic grant duration for simplicity and
because obscrved grant duridions in Concert are very ncarly deteninistic for reads and
writes. (Sce section 3.3.2 of Appendix AL)

‘The Ringbus model can now be solved for g and wry computed from

Po _ 5
— - wWgp +d
1--po

Finally, we can obtain 5.

Note that because of our approximation of the distribution of r,f Begy by a discrete gecometric

distribution, we only need )_,,R"""v. as an input to the Ringbus model. Recalt  that

MBoyy

Flygare # Uaten * lars + liany - do 1 is an input to the

RBeyv _ MBeyy | ;{norm) 5 =MBeqv
Ip “ “Ip pAg Ly —d - Iy (’

Ringbus model and fyays tarb tirans. and d are constants that can be determined by cmpirical
observations.  Such observations are reported in Section 3.3 of Appendix A, 1y, however, actu-

ally depends on 1_[‘,“”""". Trans+ d. and Ty . We define 1574k a5 the interval from the comple-

tion of a Ringbus access (from the point of view of the single processor equivalent) to the next ris-

ing cdge of the arbiter clock. Thus 1RO = d — 1,0~ tipans.
For l_,f'"“’" large, 7imdeclock i ierelevant and since the Multibus model (and the single proces-

sor cquivilent model) is asynchronous with sespect to the arbiter clock, we have 4, .Sc. This

sitnation is depicted in Figure 3.38.
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A&‘s‘éf' SRR ERNEN N LJ_LJ_LJ EREREE

wr — 1
signal S S —
—4 '.—~ llalch ‘1 mdlonluk

Grant | 1 l L.—
‘(nonn) ,'_ Mlicqv

(lm = 0and Lo = 0 assumed)

~MBeqv

Iigure 3.38: Signals when ¢, large

For ’f"”""‘ small, 7dioclock yecomes important. ‘The reason for this is that the Multibus

model (and the single processor cquivalent model) may generate a request at any time after the
completion of a Ringbus access, but the arbiter cannot accept and act on the request until at feast

the next rising edge of the arbiter clock after the previous access. (Of course, acceptance of the

request must also wait until after the previous grant, See section 3.3.2 of Appendix A for details.

In the figures we assume 1,5 =0 for clarity of presentation, so the grant terminates at the next

~M Reqv

clock cdge after the request terminates.) Thatis, L 21, (MBed 1y fact, for lp =0, a condition

that can occur with many processors on a Multibus all accessing the Ringbus, we have
Taten = ondioclock 1hus s can vary from 0 to ¢ (ignoring setup and hold times on the arbiter

input devices). Figure 3.39 depicts an example with 7, =.9¢.

o
clezk
Ringbus ———l I g l:;':;mk“ = 95¢ l l
rs:]:;? __”‘_,— 'l-m-h =% l
g I Miar b ‘
P I
Grant I

signal

l*--——-- Access | # # Access 2 ——4

Scgments stitl granted
to access |

Figure 3.39: Signals when (‘””wv -0

An approximate relation for 1., is
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(Spdtoclock e 4 Ringbus access is followed immediatcly by another Ringbus request

llarch = | 5¢ otherwise

Therefore fgen®.5¢(1 - Prp )+ Py 1psiocok — S 4. Ppgtd — lipans ~ lany —-S¢) where Pgg is the
probability that a Ringbus access is followed immediatcly by a Ringbus request. In otiier words,
Ppp is the probability that the Multibus queuc is nonempty at the termination of the present
access and that the next request in the Multibus queuc is for the Ringbus given that the present
access is a Ringbus access. Py can be determined from the- Multibus model: it is another output
of the single processor cquivalent model of the Multibus.

In summary, we have three inputs to the Ringbus cquivalent modcl from the single processor
cquivalent model: IMH pMBew (e j= —(S/2-1), -+, =11 -+, 0or $/2). and Pgy. In
addition, we have four other inputs o the Ringbus cquivalent model: fgap. Tab. Tyans. and d.
Note that only mecans are required for the inputs (except for pMBY and Pry) to the Ringbus
cquivatent modcl. FFormally, the output of the Ringbus cquivalent model is the probability distri-
bution of f,zy. However, in scction 2.9.2 we assumed an exponential probability distribution for

I,rp in the single processor equivalent modcl, which is completely characterized by tarp- Thus we

only rcquire f,z as an output of the Ringbus cquivalent modecl.
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3.10 Conclusions
Conclusions 1 to § pertain to the definition of the Ringbus given in scction 3.1 and the vari-
ous assunptions that we made. ‘These assumptions are listed Lelow:
1) cven number of slices
2} no propagation dclays or metastability settling delays
3) memoryless i.c. gcometric - probability distribution for nonnull request arrivals
4) symmetric request probabilitics
5) no global registers
6) all slices identical in all respects
7) all probability distribulions stationary and all processes in stcady-state
8) no bound on request waiting time

9) dcterministic or gecometrically distributed grant durations of an integral number of arbiter

clock periods
10) instantancous arbitration time (i.c. no arbitration time)

1) no start up time, no cnd time, and no dead time

[ For six or more slices, the optimum performance of the Ringbus is difficult to detennine
and analyze - because of the lurge number of states - even with all the simplifying assump-
tions.

2, "T'he optimal arbiter algorithm depends strongly on the request probabilitics; no one arbiter
algorithm is best. In addition, the optimum performance of the Ringbus depends very

strongly on the request probabilities. T'he maximum throughput for requests of length onc

. 2. 7 .. . - .
is between —8 and --§ (where S is the aumber of slices) and the maximum throughput

for requests of length 8/ 2 is 2. A first order approximation of the dependence of the

.

. e S _—
optimum throughput on the request probabilitics is given by —1: where [ is the average

request length:

) YR N . 4

& (=py (1-po)

.

S . ) . .
(Note that = is part of the upper bound on g developed in section 3.5.1.1.)

A o
Y 4% %

R
YD
ll,,‘

L\

P

A4
o4

S

o s
LI

P
. .'J.n'y'.

s




228

Ringbus Modecl

For four slices the optimal arbiter algorithm always grants the maximum number of
requests possible in every state, independent of the request probabilities.  For six of imore
slices. the optimal arbiter algorithin does not always grant the maximum number of requests
possiblc in every state. However, for six slices the optimal throughput is not degraded signi-
ficantly for light to medium loading by restricting the algorithm o grant the maximum
number of rcquests in every state. For heavy loading with mainly very short and very long
requests, the optimal throughput is significantly degraded with this maximum request res-

triction. We expect that this degradation increases with the number of slices.

FFor six slices, the optimal arbiter algorithm docs not always grant the request set utilizing
the maximum number of segments p()ssi'hlc in cvery state cither, although the maximum
number of scgments decision scemed favoured in those stides in which the maximum
number of requests decision was not favoured. For all request probabilitics, the optimal
throughput subject to the maximum number of segments in cevery state is always greater

than or cqual to the optimal throughput subject to the maximum number of requests res-

wf

e

s

Is

triction in cvery stite. We expect that this result also holds for more than six slices.

X
Rt

-

.
LY
»

A rcasonable sub-optimal arbiter algorithm for six slices is the following:

In cach state sclect a request subsct to grant by choosing arbitrarily from all the

request subscts in a state that:
I. utilize the maximum number of segments
2. have the maximum number of requests subject to 1, and

3. have the maximum number of longest requoests subject to 1 and 2.

We expect that this algorithm is also a rcasonable sub-optimal arbiter algorithm for more

than six slices.

FFor deterministic grant durations of > 1 rounds. the optimal arbiter algorithm tends to
grant requests immediately for very light loading (pg=1) and tends to delay and align
requests so that they can be granted at intervals of  rounds for very heavy loading (p=0).
In fact, for py=0 the optimal arbiter algorithm is the optimal interval algorithm - i.c. the
optimal algorithm subject to the restriction that requests can only be granted at intervals of
d rounds. The optimal interval algorithm is the seme as the optimal algorithm for -1 and
the cquivalent request probabilitics. The optimal algorithm in between the extremes pg=1
and po=0 is a complex function of the request probabilitics and grant duration d. | 1 four
slices, the optimum throughput can be cstimated fairly closcly by the exponential approxi-
mation of cquation 3.19. which depends only on the optinium throughput for 1. We

cxpect that cquation 319 also yiclds o rewonable approximation to the  optimum
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S
N
throughput {or more than four slices. :E.,
5. T'he performance of the Concert Ringbus can be improved by making the access paths sym-
metrical and by maodifying the arbiter algorithm. Results for four slices suggest that when ‘; Y,
counterclockwise requests  predominate, the greatest improvement in performance is " 9,
achicved by making the access paths syminetrical, and when long requests predominate, the )
greatest improvement in performance is achicved by modifying the arbiter algorithm. ) _q
A
The performance advantage of symmetrical access paths over asymmctrical access paths is "'-.:_'
difficult to quantity since uscrs may adapt their behaviour to suit the topology, and thus the :_';
request probabilitics may change with the topology. Si_;;ﬁ
Symmetrical access paths require three additional sct of drivers per slice (sce Figure “)T N
and a more complex arbiter since arbitration must also be performed for request destina- '_Z?:'_
tions (unlikc with asyminetrical access paths), As discussed in section 3.1, the Concert ;'..-.:-::
Ringbus arbiter is casily modified to perform this arbitration for destinations but the e
nuinber of parts required doublcs. s
It must be cautioned that modifying the arbiter algorithm may nat improve the perfor- "{,
mance to the degree suggested by the results in this chapter since we have ignored two '.:
impoitant issues. These are 1) the realizability of the optimum arbiter algorithm in a reason- '}":
able amount of hardware and 2) the arbitration titne required by a rcalization. "T'he arbitra- Sl
tion time obviously degrades performance and if sufficiently large. it may negate any possi- .“-::,::;
ble gain in performance. We have also ignored the practical requircmient for a bounded ,'
request waiting timic. However, provided that the maximum permissible waiting time may O
be sufficiently large, the degradation that this requirement imposes is minimal. PN '
The performance of the Concert Ringbus arbiter can be improved by cither of two trivial :::::;_“
changes (or possibly both) to the arbiter priority ROM. Results for four slices indicate *:.:
these changes yield only minor improvements in performance. However, the magnitude of -~
these improvements should increase with the number of slicces. NS
6. Since a crossbar interconnection has the hest performance achicvable (where the intercon- E‘;
nection must be circuit-switched with § sources end .S destinations) and is popular and well ':;:3‘
known, it is interesting o compare the Ringbus and a crosshar interconnection. We make ' Z',,"
such a comparison on the next page, dividing the comparison into the following three arcas: ;'_:z::
performance, hardware costs, and arbitration costs. js'::{
N
LN

+ One sct of drivers is required for cach unidirectional switch and two scts are required for each bidireetional
swilch.
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Performance

The optimal throughput of the Ringbus is close to that for a crossbar when cither the load-

ing is light or short requests predominate (or both). Otherwise, the optimal throughput of
the Ringbus is significantly less than that of a crossbar. This degradation in throughput rcla-
tive to that of a crossbar is cspecially severe in heavy loading when long requests predom-

inatc.

Hardware Costs

To connect $ sources to S destinations, the crossbar intcrconnection requires 82 drivers
wherecas the Symmetric Ringbus requires 65 drivers and the Concert Ringbus requires 38
drivers. The Ringbus also requires more hardware for arbitration than a crossbar docs, but

the difterence is difficult to quantify.

Arhitration Costs
Arbitration for the Ringbus must be centralized whercas arbitration for a crossbar may be
distributed amongst the destinations. Consequently, an arbiter for the Ringbus - cspecially

an optimal arbiter - can be much more complex than an arbiter for a crossbar.

Any final conclusion in comparing the Ringbus and crossbar interconnections (or any other
interconnection) depends on the number of siices, the expected operating point (i.c. the
request probabilitics), and the relative importance of performance versus cost. Certainly, the
Ringbus scems well suited for predominantly short requests and unattractive for predom-
inantly long requests.

The scalability of the Ringbus past cight or so slices is doubtful because of the complexitics

of the centralized arbitration and control.
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3.11 Suggestions for Future Work
‘The following suggestions arc listed in order of perceived importance.

1.  Explore the performance, hardware cost/arbitration time, and maximum waiting time
tradcoffs of various algorithms and implementations in an attcmpt to identify an idcal arbitration
algorithm and implementation. At least investigate various implementations for optimal or near-

optimal arbitration algorithms (such as the algorithm mentioned in conclusion 3 of section 3.10).

2.  Remove as many of the cleven assumptions listed in section 3.10 as possible. The most
important assumption to remove is that of zero dead time. In the Concert Ringbus arbiter, as in
any other arbiter implcmcntationf, there must be at Icast one round between successive nonnull
requests in order to identify new requests. Other factors, such as the minimum processing time of
processors and the Ringbus arbitration time (since a new request cannot be granted until after the
grant from thc previous rcquest, dclayed by the arbitration time, terminates) contribute to a
nonzero dead time in practice. We feel that a nonzero dead time is an important addition to make

to improve the accuracy of our Ringbus maodel, especially in heavy loading.

Removal of assumptions 3 and 9 to consider arbitrary nonnull request interarrival time and
grant duration probability distributions, would be idcal. Such a gencralization of our Ringbus
madel would not only lead to more accurate modeling of request arrivals and grant durations, but
also allow the removal ¢of other assumptions. As discussed in section 3.9, a nonzero arbitration time
can be treated by assuming stantancous arbitration and suitably appertioning the arbitration time
between request interarrival time and grant duration. Any start up time, cnd time, or propagation
dclays can be treated by a similar apportioning between request interarrival time and grant dura-
tion. Unfortunatcly, arbitrary request interarrival and grant duration probability distributions
would scein to make the Ringbus unrcasonably difficult to analyze. Hence any practical gencrali-

zation in this dircection is likely to be just an extension of our trcatment by special cases.

It would be worthwhile to consider inore slices in the Ringbus model but the large number

of states required makes an cxact analysis difficult and costly.

Conceptually, there is no difficulty in removing assumptions 14,5, and 6 (sce list of assump-
tions in scction J.10). However, there is the practical difTiculty that the analysis becomes compli-
cated. This is especially true for the removal of assumptions 4 and 6 since the symmetry that we
exploited so heavily and successfuily to case the analysis will not exist. It would probably be best
to have a specific situation in mind before pursuing the removal of any of the assumptions 1, 4, §,
and 6.

1 In making this statement, we ssumie that the only wlermation available to the arbiter from a slice is whether
or not a request iy prosent wd if so, the destition ol the request This in the only information available to the
arbiter in Concent
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3. Investigate the degree to which the performance of the Ringbus may be improved by
making additional information - such as the number and type of requests in cach Multibus quecue
and the waiting time so far of cach requcst - available to the Ringbus arbiter,

4. Consider other metrics for the performance of the Ringbus such as minimizing the
maximum waiting time of requests.

5. FEstablish the validity of the conjecture in scction 3.4.2.2 that when po=0 g§ ' =gd =1

i.c. when pg=0 the optimal average number of grants per.round with deterministic grant dura-
tions of d rounds cquals the optimal average numbcer of grants per round with grant durations of

1 round, assuming the nonnull request probabilitics are the same in cach case.
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Chapter 4

Integration and Simulation

4.1 Introduction

In this chapter we consider the integration of the Multibus submaodcl, discussed in Chapter 2,
and the Ringbus submodel, discussed in Chapter 3. We describe the results of the integration for
a foew cxample cases and compare these results to those obtained via simulation of the overall
Concert model. {n the rest of the chiapter we present and discuss the results of (wo ditferent sets
of simulations of the overalt Concert model with eight slices. ‘The purpose of the first set is
assess the performance of the Ringbus with different access paths and arbiter algorithms and to
compare this performance with that of other interconnection architectures in an environment close
to that in the actual Concert system. Such o comparison would be too computationally cxpensive
to perform by solving the associated Markovian decision problems. ‘The purpose of the second sct
is 10 determine the expected performance of the actual Concert system for various parameter
values. The variables considered in these simulations are the number of processors in a slice, the

mean processing time, and the request destination probabilitics.

4.2 lategration

Summarizing the results of sections 2.9.2 and 3.9.1 we have:

a) The Single Processor Equivalent Model
Input: 1,45 (the mecan Ringbus access time)

Fxogenous Inputs: N (the number of processors on a Multibus), 7, (the mean processing
time), 7, (the mean recovery time), 7,4p (the mean Multibus aceess time). pX# (the Ringbus

destination probabilities), 8 (the probability of a long word access), and ¢ (the probability of

a Ringbus access).
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§ |"
e,
'\". (
, 23

Outputs: lpm""". pMB (the mean processing time and destination probabilities, respec- .

s, t

tively, of the single processor equivalent maodel of the Multibus), P (the conditional pro-
alc | i i

bability that. given a Ringbus access, that access is immediately followed by another Ringbus

. .‘f‘:‘% l‘:

aceess)
Computation: pMB@=pRB for j = —~(S/72-1). -+, =L 1, -+ Lor$/2 N
) i+ B, _ RN TS ) S Uy
MBegv . 'P r w’ lq LA
{ st e (1) -+, ———e— |
p A BN (A --Mamp +¥lrn) N aR B :é
Y
where o0,
.
—k
w,;_ul.el :
i N—ky | A .
’_“_ - P,._"_E.(___,)_,_ S NI
ly A NG N! B LY L%
L, Y 4 :
k:__o(N“k“l)! A >~ 4
- - . S .~
1, + Blr - - - R
{“ 22 and 1, =(1 1 BXQL -~ ¥)Mapp + VlarB)-
la -:‘-,'«.
AAS
e
Pen = I 49 pN ! ey
1--¢+4¢¢
- o)
! e
where ¢ = BB and pV = ! —%- SRS
lams NGt N
e~ | = oA
Ko N-KNA RN
b) The Ringbus Fquivalent Model RS
s
.'.’ e
Inputs: ;I;illk'qv' piMIh'qv. Prp e ‘
kxogenous Inputs: 5 (thc number of slices), Igarr (the mean start up overhead), L (the G
mean Ringbus arbitration ime), /uns (the mean Ringbus data transfer time), d (the mean ‘C'.::,::':
duration for which Ringbus scgments arc allocated to a request and related to liruns DY f';::::
NN
trans . . . . ‘-',‘
d =g +|—|¢) ¢ (the Ringbus arbiter clock period), typs of Ringbus access paths, and -
c RCAC
RN
the Ringbus arbitration algorithm. '_.":'\
ot

Output: ;ak R

Z
>

. e, T _knorm) , — ~(norm) _7 - - -
Computation: 1,gp =t,gn + Wrp wWhere gy = lstarr + Hatch * tarb * timans -

>
Xaa
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lateh =-5¢ 4+ Prg(d ~ lpans = larb —-5¢) -
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wgy is determined from
N Y
po d
—-={ Wgp t-d
1-po

g. the average number of new or continuing grants per round, is found by solving the
M Beqv

Ringbus maodel with parameters p; = -»l'

and pq where

cPo - - -
e :Il,M”cqvf-(,,(;("l’;"")—d.
I-po

‘This is an approximation - sec the footnote in section 2.9.2. Assuming all the quantitics are

~MBeqv , 7(norm) 5 .o MBegy
o cpo | Yt tarn —d . i1
deterministic, we have — —— =] - .

[~po  |tap +¢ . oOtherwise

*Astart Z‘l “iruns

For a given set of exogenous inputs in (a) and (b), integration consists of matching the input
in (a) with the output in (b) and matching the outputs in (a) with the inputs in (b). This can he

- M Beyy MBegy

done iteratively. as outlined in the following steps. ‘The subscripts & on f,z4. [ . and

denote successive estimates of the truc values of these respective quantities.

1)  k«0. Assume some initial value for 1,pp: denote it by (fpp o

2)  Using (1apg k. determine (i,’,"”‘""')k and (pB), for the single processor model of the
Multibus.

3)  Using (1, and (pMBe0y, | determine (Tugg )i 1 for the Ringbus equivalent model.

4)  kek 1 If the estimates of 1,xy. r_,,M”""", and pMB9Y are satisfactory, stop. Otherwise go to

step 2.

The iteration can begin instcad by assuming some initial values for I,‘,"’"""' and pMBr and
then estimating 7,g4. Note that since we employ various approximations in obtaining the
cquivalent models of the Multibus and the Ringbus (principally approximating the interaction
between the two models by first moments), the final estimates for 7,5 and l',}””""". will not neces-
sarily cqual their true values. We did not investigate the convergencee propertics of the above itera-
tive procedure. However, we wound that the cstinates converged rapidly whenever we used it

T é wo cases for whic Multibus an ingbus modcels can he inteprated withoi
I'here are 1 for which the Multibus and Ringl el he inteprated without

resorting to iteration:
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Case 1: Very light Ringbus trafTic
This casc can arisc in two ways:

1, +Bt,
i) J’__B_’, large,  irrclevant, or

1, + B,
i) ¢ small (i.c. ¢=0), -'-L--A—lp- " irrclevant.

‘The first way corresponds to very light utilization of the Multibus, which leads to very
light utilization of the Ringbus regardiess of . 'The sccond way corresponds to very
minor coupling between the Muliibus and Ringbus, which leads to very light utilization
of the Ringbus regardless of the utilization of the Multibus. Of course, very light
Ringbus traffic can be achicved both ways simultancously. However, in our trcatment

below we choose o consider cach way as a distinct subcase.

1, + B,
Case 1(i): _E_W-_’ large, ¢ irrelevant

. 1B, . - N1 .
For TN sufficicntly large, we have 4,%0, p =0 (and hence fg0n ®.5¢),

A Begy __’I’_F ﬁ Iy

T, W ;"v‘O. «
p “ +ﬂ)~ wgJ, and

1ok B 1™ ars +.5¢ 1 Tp # Tiuns - "ThUS l:m""" and 1,z ard all the other quanti-

tics of interest can be found withowt resorting to iteration,

; . 1o +BIy
Case 1(ii): ¢ small (i.c. ¢=0) and - N irrelevant

In this case 7,,””"" is very large, Pgrp=0 (and hence fpy=.5¢). wep =0, and
1ok B =BT = ey +.5¢ #1 # Tyrams- Ly may be  computed by  taking
1a=(1 # BMaarp- Note that it is the possibly large value of 7, that differentiates this

subcase from the previous one.

Case 2: Very heavy Ringbus traffic

1, + B, p +Bl,
This case arises when both -7 ;V/}——' is small and ¥ is large (i.c. ¢=1). For -2 Nﬁ d

sufficiently small, the Multibus is saturated (i.c. N>>N° where N is the saturation
int of the Multibus) and hence 7, 5(N - N )i,. yiclding ;%=1 1% as i
puint of the Multibus) and hence £, (N - N ), yiclding ¢, Rl ¢ as in

scction 2.9.2. In additicn pN"'= and thus I’R”=I——~$§¢-§». With ¥ =1, i,',"/"""’z()
. I ]

and Prp =1 hence fyen ®d -ty - lyans- Vherefore i,f””" is

d constant.
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Assuming d, 1,4, and lypn, arc deterministic random variables

_ O F tgars + Uatch + larb # btrans —d = lgay « ¥ lygr 2d - lygns
lRI)cqv .
B .

lap +¢ . Otherwise.
Once pg and the corresponding g arc determined, wgp is given by
ls'

~RBegv
b +

) &
WRE +d d

~MBeqv
14

Vinally, torn = tyurr * Yaren * lurb * lrans # WRB ~ Istare * d +wgp. ‘Thus i and

t.xi and all the other quantitics of interest can be found without resorting (o iteration.

1,481,
Note that for small cnough N N and ¥ close cnough o 1, llﬁ‘”’“"’zo regardless of

the various probability distributions in the Multibus and Ringbus modcls. In this case

the probability distribution of l,fm"‘"' is given very acctirately by i,f”""’v. (1t in fact

I + Bty w
becomes exact for ¢ =1 as v-"——N—~ —0 since l,f”"‘"—v(;.) Henee our first moment

. : . : o o + Bl
approximation of thc Multibus o0 Ringhus interaction is very accurate for 4—7\,———

small and y=1.

(1P ang 1, for the

We now consider some example cases. In cach case we determine

Multibus model and 7,45 and wgy for the Ringbus model.

All the simulations reported in this section and in this chapter arce simulations of the overall
Concert model. As discussed in section 1.3.5, this overall model is comprised of a model for cach
Multibus and a modcl for the Ringbus. As a model for cach Multibus we choose the Multibus
model with long word and Ringbus accesses discussed in section 2.9, As a model for the Ringbus,
we choose the basic model discussed in section 3.1, This madel depends, of course, en the particu-
lar arbitration algorithm and access paths desired. In simuiating the overall Concert model, we
simulate cach Multibus maodel. the Ringhus model, and the interaction between Multibus models
and the Ringbus model. Since our Multibus odels are continuous time models, we simulate them
in continuous time and since our Ringbus models are discrete time models, we simulate them in
discrete time. We simulate the Multibus models as operating asynchronously with respect to the
Ringbus model; thus our simulations include the effect of synchronizing the Multibus signals with

the Ringbus arbiter clock. ‘T he parameters of our simulations arce as follows:
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Multibus maodel:

- the number of processors on a Multibus, N.

- the processing time disiribution, with mcan Tp.

- the recovery time distribution, with mcan 1,.

- the Multibus access time distribution, with mean Iopg.

- the probability of a long word access, 8.

- the probability .ofa Ringbus access, .

- the Ringbus destination probabilitics, p*8.
Ringbus model:

- the number of slices, .

- the arbiter algorithm.

- the Ringbus access paths,

- the arbiter clock period. ¢.

- the start up overhead, lg,,,. (Vaken as a constant.)

- the Ringbus arbitration time, £,,4. (laken as a constant and an integral multipie of ¢.)

- the probability distributic: of the Ringbus data transfer time, with mean £, . (Note that

the duration, d for which scgments are allocated to a Ringbus request is related 0 fip,s by

ll runs
)

d =ty "L['"'—_' <
¢

Other:
- the block size, B. Each simulation was run until processor 1 on Multibus 1 (this numbering

is arbitrary) completed 30 + BB processor cycles (i.c. processing time, waiting, access time for word
or long word). ‘To remove the effect of transients, statistic gathering did not begin until processor 1

on Multibus 1 completed 30 accesses.

- the number of block repetitions, R. ‘The statistics reported are based on R repetitions of

cach simulation.
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We remind the reader of our basic assumptions, which apply to our simulations as well:

° We assume that all the random variables 15, 4y, lopp. a0 {ip,s and all the prohabilitics 8,
¥, and p,“ arc mutually independent and stationary.,

° We assume cach Multibus model has the exactly the same paramcters, so all Multibus
models are identical in every respect.

. We assume that the Ringbus model is completely symmetric with respect to cach Multibus

interconnection.

In all our simulations we assume in addition that:

1) the processing time is exponentially distributed,
2) the recovery time is deterministic, and
3) the Multibus access time is deterministic, .

We caution that the following examples were chosen for purposes of illustration. "They do
not represent the actual Concert system and they do not represent an in-depth study or analysis of
integration. In cach casc we assumc that the Ringbus arhiter has vzcro arbitration time (i.c.
Lys —0) and that there are no long word accesses (i.c. 8 =0, and hence we take 7, -0 and y - 0).

In addition, we ke fy,,, =0 and 1,4 =1.0c.

Example [: Tp =1.0¢, S =4, deterministic grant duration of one round i.c. d = ¢, optimal arbiter

for dctcrministic grant duration of onc round, symimctrical access paths, p"l’f = p',"'” =.4, and

p§h -2,

Table 4.1 presents the integration and simulation results for various values of N, ¥, and
Lrans (Which is a deterministic value here).
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4 0.5 0.98 Integration 1.02 2.76 0.27 | 1.48 0.23 1.60 :'.'.:,.
’ ' Simalation(1.00£.05 |2.41%.050.03%.01 [ 1.28 0.27£.03| 1.75:£.03 oY
o o 09y [miegrationl 001 355) 003 1851 0.50]  2.64 LN
) ) SimulationD.00£.001] 3.51£.07 E.()I'J:.MJ 1.50 0.504.02(2.66+.03 ..
Intcgration] 100 | 517|026 | 1.47 023 162 o
6 0.5 098 | .. . A b
Sitnulation(l.00+.04 [4.67£.040.024:-.001] 1.27 027+£01{1.76+.03 e
—— . — (RO (U S, . —— ""
6 | 10 0og  [Wiceration| 000 6.58] 002 152 0.52 2.64 ;-;Q
) _JLSimqu(imuD‘.OOi.OOl 0.54:t.06JD.02_t.OOl 1.51 0.51+.01 2.64:t.02J B
L i it it o -
_ _ RS
Table 4.1: 1, =1.0c, § =4, deterministic grant duration of onc round i.c. d — ¢, optimal arbiter for .:-'.'::',;
deterministic grant duration of onc round, symnctrical access paths, p ’f’{ :p{" B -4 and pf" =.2. :,_::x:
.'-:ﬂ-::
L ata )
N
NS
In general, the integration and simulation results agree rather closely. The results are closest }_'\f
for tight Ringbus toading (¥ =1, ¥ .5) and very heavy Ringbus leading (N =4 and 6, ¢ = 1.0). :::;Z:f_ '
This is to be expected since ¢
1) the analytical formulac describing the Multibus model are the most accurate for general '-f:i.\
b."-"\
e N
¥ ’—aR R was not one of the stalistics gathered by the simulations. In cach row corresponding to a simulation in ::;-::'::
o,
this table and in  the other  tables, gk was  computed fron. the  refation ::'ﬁ:'C\
a v,
;aRIl = ’_.\'mrl + ’_lau'h +Wrp ! Tmm.\' where ’-slurl =0. ._-!'. N
S
o
.-'\:I:‘:‘
:":"\..
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probability distributions for N<<N° and N>>N° where N° is the Multibus saturation

point, and

2) the first moment approximation of the Multibus-Ringbus interaction is fairly accurate for light
Ringbus loading (and N —=1) and hcavy Ringbus loading (and N>>N). In the first case,
since Ringbus waffic is light, wgg®0 and e =.5¢. 'ThUS Lgp =lyar +.5¢  luy + lirans -
Since N =1, the Multibus queue (in the Multibus modcl) is quasi-reversible regardless of the
Muitibus and Ringbus access time distributions and thus the analytical formulac of the Mul-
tibus arc cxact with only the mcan Ringbus access time, f,4p. In the sccond case, both the
Multibus and Ringbus arc saturated. In saturation only the mcans of the various quantitics

arc required to determine 1, Wiy, and fpp.

Note that light Ringbus loading and very heavy Ringbus loading are two cases - as discussed car-

lier - for which integration can be performed without iteration.

‘The results for various values of 1, (for N =1 and 2) arc presented in ‘lable 4.1 to deter-
mine the effect of 1,y on the accuracy of the integration results. In afl of the Ringbus models
that we investigated in detail in Chapter 3 (i.e. the models in section 3.3, 3.4, 1.5, and 1.8) - includ-
ing the optimal arbiter with a deterministic grant duration of onc round, as in Example | - we
assumed that the probability. pg. of a null Ringbus request was independent of all other tequests
on the Ringbus. However, the probability of a null request at the. Ringbus in our Concert model

can depend on the previous requests at the Ringbus. ‘The reason is as follows.

First we introduce some terminology. We term a request fatched by the Ringbus arbiter a
latched Ringbus request or a LRB request for short.  In addition, we call the arrivai of a nonnull
Ringbus request from a Multibus an arrival event. Now, if the previous LRB request at a slice is a
null request then the next F.RB request at that slice will also be a null request if there is no arrival
cvent at that slice in the arbiter clock period following the latching of the previous null request.
On the other hand, if the previous [.RB request at a slice is a nonnull request, then the next LLRB
request at that slice will be a null request if there is no arrival event at that slice in the interval
between the termination of the Ringbus access (the data transfer, not the interval for which seg-
ments are allocated) of the previous TLRB request and the next latching instant. ‘T'hese two situa-

tions are depicted in Figure 4.10. (Remember that 1y, =0 and 1, =0 here.)
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Arbi pe—c—»| Arbi e e |

ier uer

w1 L LI LI o ) L] LI

- —Null REI!&huS

: Null Ringbus .
Ringbus requedt Ringbus 4 ., r_ e reque

request L - request — — ...
signal signal l l
. [ Nonnull Ringbus
Ringbus request
grant -
signal I

[——

No nonnull Ringbus request T
can artive in this intervalk
{trom this slice)

Figure 4.1: T'wo situations lcading to a null request

Thus a null Ringbus request follows a null Ringbus request if no Ringbus request arrives
from the Multibus in an interval ¢ and a null Ringbus request follows a nonnull Ringbus reguest
if no Ringbus request arrives from the Multibus in an interval o - 1,4, <c. Note that if £, = d.
then a nult Ringbus request must follow every nonnull Ringbus request. 'To avoid this - since the
Ringbus maodel in this example Gind all the other cxainples) does not incorporate a null request
aiter every neniull request - we ke f,0s =d — ¢ for some constanit ¢, 0<e <c in all the cases in
this scction,

£ N =1, then with our assumption of exponential processing time, the probability of a null
LRB requiest following a nudi 1.RB rcquest is proportional to ¢ and the probability of a null | RB
request {ollowing a nonnull I RB is proportional 10 d -~ tyns - Urans a4 d arc deterministic in this
cxample.) By taking fi,an very small (01c), we minimize the dependency of the probability of a
null LRB request on the previous 1.RB request at the same slice. By king s targe ((98¢) we
incicasc this dependency.

If N is large and ¢ large so that the Multibus qucuc is nearly always nonempty with
Ringhus requests, then /,f”"""'z() and the likelihood of a nonnull Ringbus request arriving in ¢ or
d - iy 15 about the same (as long as d > 1,,,,,). Thus the interval o - 1,5 has simall effect on

the probability of a null L.RB request for large N and ¢=1.0.

‘Thus we cxpect the probability of a null LRB request to depend quite heavily on o -~ 1,4ps
for light Ringbus tratfic and diminish as the Ringbus traffic incrcases. As we stated carlier, the
Ringhus madel used in the fincgration does not incorporate the dependericy of null request proba-
bilities on -~ 15,5, TUmight he expected that the integration results voould be most accurate when
d = lipans s adjusted o reduce this dependency. Indeed. this docs scem to be the case for ¥ -1

and ¢ 1.0: the integration and simulation results for 4, - Ole are closer than those for
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N
g
_ N
Trans = -98¢. For other values of N and W there seems to be no conclusive link. In fact, for N =4 e
. - . N
and 6, the value of 1, scemed 0 make no difference (as long as o - fqny <¢). as expected. -
(Ilence only the results for 7,,,s =.98¢ arc shown in Tablc 4.1.) ::-::
-.:{ *
N
. "e g
Fxample 2: T,, =1.0c, § =4, deterministic grant duration of onc round i.c. d =c, rotating priority i
with counterclockwise rotation, asymmetrical access paths, p’f’f = p{"” =.25, and pf” =.5. '..-'.:';"_
:-:;-,
s, e,
The integration and simulation results arc contained in ‘Fable 4.2. Again the results agree ;::".:::‘
rather closely and again the results are closest for light and very hcavy Ringbus loading. -
N
4-'.‘ )
..
= TTEME ] T T T T e T T oA
N ¥ | lians/c fp | W/ N pen/c | tarp/C | Wrp/c g AN
el Bt T e, SRR B e Lt Y SRR S EE S-SR I NPT NSty St SRRl Sttt | '
Ll oos 001 |Mmegration 3000 00 0.50{ 0.8 0.37 1.03 DILA
' ' Simulation|2.98%.70 0.0 |0.54£.04; 091 [0.36£.12{1.03£.17 8
I B D JUDSUR P ARSI A0S PO NN
1 0. 0.98 Integration 3.00 0.0 0.50| 1.76 0.28 0.84 ';(:x'
’ ) LSinqu[ion 2.84+.37 0.0 10.54+.02) 1.77 10.25%.13,0.86x.00 NN
- —— - e A
C oo g0 [Mmtegration| LOO| 00 0.50{ 1.48 097 161 e
) ' Simulation|0.97£.12| 0.0 {0.58%.021 1.56 [|0.97+.14:1.57£.03 Sl
1 10 0.98 Integration .00} 0.0 0.50{ 1.82 0.34 1.42 R
' ' Simulation[0.99£.04| 00 0.57+£01] 196 |0.41£.09/1.35%.04 RN
> | os qoi |Imegration| 147) 0611063} 129 065 145 n i
' ' Simulation{1.37£.08]0.56%.04{0.81+.04] 142  10.60%+.07;1.43+.04 BASE
Integration 1.42 0.82 0.36| 1.8l 0.47 1.24 y
2 0.5 098 .. . L
Simulation|1.31£.2810.694£.0810.27£.021  1.80 0.55+.14,1.29%.10 oA
3 10 0.0] Integration 0.15 1.56 0.84] 226 1.41 1.66 \-_::'.:‘,f.
' T |Simulation(0.08+.03[1.52+.14/0.94£.02] 232 [1.37+.08/1.66%.05 N
2 | 1o | oog [mesrtion| 0S| 159) 017} 229 L14| 164 N
' ) Simulation|0.08£.02(1.54+.03(0.12+.02] 237 |1.27+.09]1.63£.05 x o
- L Taal T sxnel narl 11 L nanl 140 ::f:'_
4 0. 0.98 IAn(cgl.ufnn 1.02 3.08 027) 147 0.42 1.49 AN
Simulation[0,98£.013.15£.20[0.03x.01| 175  0.74%£.14 1.46+.07 o
Integration|  0.00]  623] 003 241 140 166 T
4 1.0 0.98 . . . >,
Slmulzm(mlg.()sz.OI ().ld:t.l‘)JO.()Qi.Ol 2,39 11.39+.06(1.67£.05 -
] ] ,.::‘.::
Table 4.2: 1, =1.0c, S =4, deterministic grant duration of onc round i.c. d = ¢. rotating priority :::-':‘_-
Y “‘v-r-.
with counterclockwise rotation, asymmetrical access paths, p'l'f :p{m =.25, and pf” =.5. :;
25T
-.' WY
e
N
s
\3:-:::1
e e
R N N ANy
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A
. . o . A
Example 3: 1, =1.0¢, S 4. gcometrically distributed grant duration with mean d  4c¢. optimal ::,.
N
arlmcr for bcumclnc duration with mean o - dc¢. synunetrical access paths, pR” p{“’ 4, and >
k-2 2
J:w.
. o KN
The integration and simulation results are shown in Table 4.3. In obtaining these results we \';‘
WOK typans =d —.02¢, hence 1t =.02¢ for heavy Ringbus loading. Note that once again the
integration and simulation results agree rather closcly. J\_
oS
N
- T T-MBie = S 7 N
Nl e el e | /e | TaknZe | Brnse |8 | A
| 0.5 Integration|  3.00 0.0 050 6.58 2 lO 1.67 -
’ Sumllalmn" 95:|: 40 0.0 | 0. SI:t 03| 650 2.01£.35 I ()()j: 09 -:.a_
U1 g mesradion| oo 00| 050 721 273 1.95 3
’ Simulation|l 00%.10 0.0 L 0.57£.06| 7.20 265t.44 | 192+.04 L
| — SR S U UGS NSO ISP — A,
> | oos Integration| 120 3.20 031 701 172 1.95 2
' Simulation|1.18+.12| 3.22+.26 027} 7.06 28153 | 1.94+.14 .
—— ——— e —— —— - e
5 10 Integration|  0.006 6.43 008] 7.31 3.26 2.17 ::-::'
' Sumul.mnnOOJi.()l 6.28%.78| 0.07£.01 | 7.30 1?5+ 571 2.16+.12 ": )
- —— ——— e e m e —— 23
s | o5 [egration 100 ] o2 708 284 198 R
' Simuli m()n | 0’4+ 08]10.86+.74 O 20£.01 | 7.11 0 29333 2 02i 09 st
4 Lo fntcgration] 0,00 2092 002 7.31 331 219 f‘g,:
i ) Snuulmmn{(:.()l)i'.()l 20,99+.82) 0.02:£.01 ) 7.36 336%.12) 2,17k, 03 :.:f“
_— AR U - , S— F.':.r:
Table 4.3: l_p:l.()(:. S =-4, geometrically distributed grant duration with mean d - 44‘ optimal ’:
arbiter for geometric duration with mean d =4¢, symmetrical access paths, p R —pl B4 and "
B =5 vy
pf =.2. f-\_,:
'n.._"-\
SNos
S,
O
Example 4: . =4, deterministic grant duration of one round i.c. d = ¢, optimal arbiter for deter- |
>
ministic grant duration of one roeund, symmctrical access paths, p.oy=py--4. py=.2, and e
lirans =98¢ (i.c. {yyns deterministic).
This example is the same as Example 1 except for the value of 7,,. ‘The abject of this example -
W
is to examine the accuracy of the integration results when the Multibus is operating in the knee :::_\:,.'
* . . . . '--'. )
region i.c. for N=N . We have alrcady scen in the previous examples and have discussed that the _:.,-:,.\
. . . . . . . '-.:\{ \
integration results are the most accurate for light Ringbus loading and very heavy Ringbus load- -.;.\i
ing. X
A
R - AN
Bl . - _ g
We attempted to keep -~ - - (1, (L L) oan ¢ Yl ) approximately equat to S, LA
" N
Iadv
T
‘," L. ] ".1 - - » \;"l'
.‘ ! ‘.-.‘ O o 'vf‘ ." v‘ .....'.. I A ‘e ’ ’_ .. - \»_- n . R N s A e AT AN Ay S \-.\ )
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(Uhis corresponds to a=$S in the M/M/1//N maodel discussed in section 2.4.) For this valuc of

bt B

lq

, N° is approximately 6: thus we consider N -2, 4, 6, and 8. For ¢ —.5, we took 1, <6.0c

and for ¥ =1.0 we took 7,; =7.5¢. (Recall that 1,87 =0 and B --0.) The corresponding integration

and simulation results are shown in ‘Table 4.4,

N ) ' ’_"".‘."l-,‘"/ c l—,f Ili(-qv/ (& Tw/ c 1 _’—11'5(!./_(_‘ I_,_,R /{/ c WR R7C g
R 0.5 0.98 Integration 6.05 (.20 046 1.50 0.06 0.53
- ’ ) Simulation{5.811.48{0.13£.01{046£.46| 1.50 [0.06£.010.55+.55
4 0.5 0.98 Integration 2.58 0.79 039 142 0.06 1.00
) ) Simnulationi2.42+.07(0.52+.02{0.33 .01 143 [0.12+.01{1.04%+.02
- pplutel ity Misutvptiy B el il
6 05 0.98 Integration 1.54 1.85 0.33] 149 0.19 1.32
’ ' Simulation|1.45%.03(1.23£.02 ().]‘):t.()‘l{ 1.36  [0.19+.01]1.421.02
8 05 0.98 Integration 16| = 34l 0.29{ 1.51 0.24 1.50
3 ’ ) O Simul;liinn l.|()j:.()2_ Eﬂii_O() 9@3701 Hl~ _Q?Si ()l l_.()():f_:.Ol
> | 10 l Oj)g—"l}ucgnfﬁ(i{ Coan] 026]  o042] 154 I 004 0386
’ ) Simulation}3.08+.130.15+£.02(0.43+.01] 1.51 |0.10+.02(0.874:.02
4 10 0.95 Intcgration 1.00 0.90 0.28) 1.49 0.23 1.61
) ) Simulation{0.91+.04|0.65:£.0310.27£.01] 1.50 10.25£.01}1.66%.03
- o St bt . N i bt
6 10 0.98 Integration 0.35 2.19 0.15] 1.52 0.39 2.14
i ’ ’ Simulation]0.27:£.011.75£.0610.14+ .01 1.53 |041£.01[2.23+.01
e | 10 | ogg |micgration] o 1 404l 008] 153 - oa| s
P ) Simulation!0.06£.01 3.(;3:t.0(_)|LO.0()i.‘H 1.53 _.1(1.493:.01 2.53+.02

Table 4.4: $ =4, deterministic grant duration of one round i.c. d =¢, optimal arbiter for deter-
ministic grant duration of one round, symmetrical access paths, p_y=p;-=.4, py=".2, and

Yrans =98¢ (.. lyns deterministic).

In cvery case listed in ‘l'able 4.4, ¢,

- inl('),'rmiun>; simulation
w

. (The supcerscripts denote how the

quantitics were obtained.) This is not surprising. especially for =5 since the access times have a

large deterministic component, We have already scen in Chapter 2 that the Multibus model with a

scrver-sharing queuc overestimates 7, if the access time distributions are deterministic. Here, the

Multibus access time distribution is entirely deterministic and the Ringbus access time has a large

deterministic component: the Ringbus access HMe is at 1east £,y,ns. WhEre ;4,5 is deterministic,

In addition, IZV Beqgv integration > ;I Begv simula

listed. These are obviously related. A Targer valt

hence a smaller value of g. Also, f,’,w"""' inferation
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than it should be, then 7""""" integration ¢ fikely to be larger than it should be. In addition, it is
likely that the probability distribution of lk'"" is skewed more towards sherter times than that
predicted by our geometric approximation of it. ‘This would causc the Ringbus to be more heavily
loaded in actuality - i.c. in the simulation - than predicted by integration; hence the actual
throughput of the Ringbus would be greater than predicted by integration. Since the probability
distribution of IR”""" would be more skewed towards shorter times for larger N, this cffect might

explain why the difference g¥mulation _ g intcgnation iperoases with N.

Discussion

‘The results predicted by integration of the Multibus and Ringbus modcls agree fairly closcly
with simulation results of the overall Concert model for the four cxamples considered. We
observed that the integration results were most accurate for light Ringbus loading (N <<KN *, small
¥) and very heavy Ringbus loading (N >>N°, y=1). This is in fact a gencral result for integra-
tion, as we discussed carlier, and can be justificd analytically. We performed the integration for
several other examples with S =4 and observed the same gencral trends as in the four cxamples
reported. We did not perform any integration for $>4, for which we cxpect the same gencral
trends.

The accuracy of the integration results in the knce arcas (i.c. for N-"w‘N‘) will dcpend
strongly on the various probability disuibutions, as we saw with the Multibus modcls in Chapter 2.
A great deal of further work is requised to clarify and characterize the accuracy of our integration
technique in the knec arca.

Certainly, our four examples demonstrate that our integration techrique works and that it is
a viable approach if accuracy is not paramount. If greater accuracy is desired from the integration,
then the interactions between the Multibus and Ringbus models will have to be approximated by
morc than just first moments. However, this will be difficult, and probably infeasible, in most cascs

when dealing with analytical models for the Multibus and Ringbus.
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4.3 Simnmlation [: ‘The Ringhus in the Concert Environment

In this section we present and discuss the results of a series of simulations to assess the per-
formance of ithe Ringbus - with cight slices - in the Concert cavironinent.

We have alrecady discussed our simulation model and its parameters in conjunction with the
simulations reported in section 4.2, To recap, our simulation medel is the overall Concert model
comprised of a Multibus modet (one for cach Multibus) and a Ringbus model. We assume the
Multibus madel with fong word and Ringbus accesses, discussed in section 2.9, for the Multibus.
The Ringbus maodel depends on the arbitration algorithm and the Ringbus access paths, Once
again, our standing assumptions are:

- cuch Multibus modcl has exactly the same parameters so all Multibus models are identical in
cvery respect

- all the random variables £,. 1. lyarp. and Ly, and all the probabilities 8, ¢, and p,-"'" are
mutually independent and stationary

- the Ringbus madel is completely symmetric with respect to cach Multibus interconnection,

The simulations include the Multibus-Ringbus interaction. In particular, the simulation model

faithfully incorporates the fact that a request from a Multibus cannot be Lautched by the Ringbus

arbiter until the grant from the previous reqguest from thai Multibus has erminated. as is the case

in the acteal Concert system,

In these simulations we assuine in addition to the previous assumptions that:

1) the processing time is exponentially distributed

2) there are no long word accesses i.c. 8 -1 thence the recovery time distribudion is irrclevant)

3) there are only Ringbus accesses i.c. yw =1 (hence the Multibus access time distribution is
irrclevant)

4) the start up time is zero i.¢. £y, 0

5) the Ringbus data transfer time 7y, is deterministic and henee the duration « for which seg-

’I/'um‘

ments arc atlocated to a Ringbus request is constant (- 1, 4 ¢y (We have already

assumed in section 4.2 that 1, is a deterministic integral multiple of ¢.)
The restrictions of B - O and ¢ = 1 may scem restrictive, but we make them because of space and
time constraints. 'Fo some degree, the effect of ¢ can be determined by varying ’_/’ with ¢ held
constant at 1.0. We make the assumption of - 1 in particular because we are chiefly tuterested in
the performance of the Ringbus.

T ¢ is the Ringbos mbiter clock period.
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o
)
The paramceters in the simulations arc as follows; -,‘:L
ad e
1) “The number of processors on a Multibus, N. We take N =21, 2, and 4.
y . . - o . . “ v
2)  ‘The mean processing time, 1. We lake 1, = 5.0¢, 10.0¢. 20.0¢, 50.0¢. and sometimes i00.0¢ ‘i"'
e
> ]
and 200.0¢. e
A
*
e . — - : . . . AT
3)  ‘I'hc Ringbus destination probabilitics, [)/‘R. We consider three different sets of Ringbus des- )
tination probabilitics: asymmetrical, symmetrical, and uniform, as listed in ‘Fable 4.5. '
L] J N
B (T =B T e Y hY
Distribution pf” pf” pﬁ‘” pf” pk.’f p’_‘_'{ p"”_{ .ﬂ.‘\-
P T L S R | SICTEESICNLU SEEIESE N ST TN SEIELELL ALY SEEETIEE Tt R = iz A
Asymmetrical || 4324 | 216 081 | 0541 1 0270 | 0541 | .1081 -:.\';
Symmetrical || 2759 | 1379 | 0690 | 0345 | 0690 | .1379 | 2759 iy
Uniform || 1429 | 1429 | .1429 | .1429 | 1429 | .1429 | .1429
[ - ——— N SRR GO — ——— e — R [ — E:\
Table 4.5; Ringbus destination probabilitics .rtr:
NN
.r:.(- !
. N - L ok
Both the asymmetrical and symmetrical Ringbus destination probability distributions arc A
negative binary exponential distributions where the exponent is the smaltest number of scg- s,
(N
. . . v . - . LR R,
ments required to connect the source and destination.  “That is, for both the asyminetrical HLRRY.
g ' hY
and symmetrical distributions. pf% =275 where seg(i) is the smailest number of seg- v
i \ﬂﬁ‘
ments required o connecet the source slice to the destination slice ¢ slices away from the e
source stice and € is a normalizing constant. (Recall that the sign of 7 denotes the direction e
around the Ringbus). For the asymmetrical disuibution, seg (i) 15 computed assuming asym- .j‘_-._':-.
metrical Ringbus access paths and for the symmetrical distribution, seg(i) is computed AN
Lt
assuining symmetrical Ringbus access paths. Far example, the minimmuim nwnber of segments !{\-{‘:
required to coniect a slice to its neighbouring slice in the clockwise direction is one for both oy
o*” o
. . sgs v AL . NN
the asymmetrical and  symmetrical access paths, Thus  pRBsm) _cawmy -1 g SRy
R
plBom _cvm =1 0n the other hand, the minimum number of segments required to A
. . . . . . . . . ‘.-. -
connect & slice to its neighbouring slice in the counterclockwise direction is thiee for asym- NN
metrical access paths and one for syimmetrical access paths. ‘thus p R.Ili(u.\;.,,,) My 3 and — et

)Iilf(”m) -( sma - I-

/
The asymmetrical and symmetrical access paths are intended to reflect the ditferent distribu- -
tion of accesses that would be plausible with the respective asymmetrical and symmetrical ey
access paihs if the accesses exhibited locality. The uniform distribution is intended to retlect v
S
the distribution of accesses if the accesses exhibited no particutar locality. -
4)  T'he Ringbus arbiter algorithm, We consider five different arbiter algorithms: "E
i) I'he rotating priority (with counter-clockwise priority rotation) algorithm discussed in '
Chapter Y and wection 1.2.3, This is the algorithim ecmployed in the actaal Coneert sys- ::J:'_.:,,
AP
tem. NN
. " .-I r
NN
» a v
‘r.').'?'.':"’

LIS e N
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\,\\-\



i)

i)

Integration and Simulation 249

The greedy algorithm, ‘This algorithm pursucs a maximum reward strategy - in cvery
arbiter clock cycle it grants the maximum number of requests that it can. ‘Ties hetween
request sets with the same reward arc broken in favour of the request set with the
greatest number of the fargest requests, Any tics remaining atter this point are broken

arbitrarily.

The two phasc greedy interval algorithm. "This algorithm is best described by (irst con-
sidering a single phasc greedy interval algorithm.  Such an algorithm  alternates
between an idle interval and a grant interval. No nonnull requests are granted during
the idle interval. ‘The idle interval teiminates when the first nonnull request arrives at
the Ringbus arbiter, if there currently arc no pending nonnull requests latched by the
arbiter, or it terminates 1,4 + ¢ afler the end of the previous grant interval, if there is
at least one nonnull Ringbus request ungranted from the previous grant interval, ‘This
minimun idle interval of i, + ¢ corresponds to the minimum time between the termi-
nation of a Ringbus grant and the initation of the next Ringbus grant from the same
slice,

As the name implies. nonnull requests are granted only during the grant interval which
extends from the (ermination of the idle interval until the Ringbus access correspond-
ing to cach granted request has completed. 'The actual arbitration - i.e. deciding which
request set to grant - is donc only at the beginiing of a grant intcrval. ‘The same
greedy algorithm discussed in 4(ii) performs the arbiuation at this point. All grants
remain in effect unchanged uetil their respective Ringbus aceerses terminate,

Thus the duration of a grant interval is determined by the longest access time of those
requests granted. This could be a problem if there was a high variability in the Ringbus
data transfer time, #,,,s. However, we assume that 1,y is deterministic (see 6)). this,
of course, ignores read-modify-write accesses, for which 74, would be much greater
than for reads or writes. T'he arbiter algorithm can be modified to deal with such
accesses, One such way is to terminate a grant interval when all non-read-modify-write
accesses terminate and allow grants corresponding 1o read-modify-write accesses to
carcy on into the next grant interval,

Now a two phase greedy interval algorithm consists of one single phase greedy interval
algorithm. which we call the primary phase, and a sccond single phase greedy interval
algorithin, delayed by 1, + ¢ with respect to the primary phase. We call this sccond
phase the sccondary phase.

‘I'he single phase greedy interval algorithm was motivated by the finding in section 3.4

that in heavy traffic the optimal arbiter algorithm for four slices and deterministic grant

durations of « rounds tends o align the requests so that they are granted at intervals
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5)

6)

7

8)

cossor ¢ycle tme. f..p. (the reciprocal of the throughput of the processor), the Multibus waitin
Y (_i(/( | ahp

fntegration and Simulation

of o rounds. Thus we expected the single phase greedy interval algorithm to yield good
performance in heavy talfic. We found. however, that it actually yielded performance
that was usually worse thaa the rotating prionity algonthm {(with symunetrical access
paths). Presumably, this was due o the idle interval of duration £,y ¢ during which
no request are granted. We added the sccondary phase in an attempt to improve the

utilization of the Ringbus segments and hence improve the throughput.

iv)  ‘I'he crosshar algorithm, With this algorithm the Ringbus is transformed into a crossbar
intcrconnection,
v)  The commonbus algorithm, With this algorithm the Ringbus is transformed into a sin-
gle time-shared common bus.
The Ringbus access paths. For the rotating priority arbiter alporithm, we consider both asym-
metrical and symmetrical access paths, FFor the greedy and the greedy interval algerithms we
consider only symmetrical access paths, "The issuc of asymmetrical or symmetrical access
paths is irrclevant for the crossbar and commonbus algorithms.,
The Ringbus data transfer time, £, 1n all cascs we take £,,,,¢ 7o, as & rough approxima-
tion of the case in the actual Concert system (when ¢ =200nsce - see section 3.3.2 of Appen-
dix A).
(Note: there is no point @ Lking s —6.8¢ here as we would have done in section 4.2,
The reason is that no new requests can be latched by the Ringbus wrbiter until 27,4, after
the Ringbus access - i.c. data transfer - has terminated [since the grant corresponding to this
access continues for 1, past the termination of the access|. Since 1,5 2 ¢ here [sce below],
the minimum interval between the termination of an access and the latching of the next
request from the same Multibus is always >c¢. For 1, =7¢ this interval is 1,5, and for
Lirans --0.98¢ this interval is 1,5 #.02¢. The difference between the probability of a request
arriving trom a Multibus in an interval of 1,5 and an interval of 1, +.02¢ is negligible.)
‘The Ringbus arbitration delay. 4,4, We take 1,4 -2¢ as in the actual Concert system for the
rotating priority, greedy, and greedy interval algorithins, (Hence o - 9¢ for these three algo-
rithms.) For the crosshar and commonbus algorithms, we take 74, = ¢ to reflect the greater
simplicity inherent in the arbiter algorithm in these cases. (Henee o <8¢ for these two algo-
rithms.)

The block size B and the ren size £. T all cases we took 2 =100 and R =10.

‘The following tables contain the sivadaiten resalts. The statistics reperted are the mean pro-
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o
If,:::\
. - . L . ; i
time per access, f,,. the Ringbus waiting time per Ringbus access, sy gy, and the mean number of (
(N}
Ringbus grants in progress per arbiter clock period, g. A grant is considered in progress for the
totdd time that at least one Ringbus segment is allucated to the arant. Since segments remain allo- EE:
. . . . . . . l. \
cated to a grant for a period 1, after the termination of the Ringbus data transfer time, a grant is AT
A
in piogress for a total time of fy,,c 7 Lo, Which equails 9¢ for the rotating priority, greedy. and >
greedy interval algorithms and 8¢ for the crossbar and common bus interconnections. The * fig- -
ures associated with cach statistic indicate the corresponding 95% confidence intervals. Py
I) ..
L] \
-_—f- “'-'A Py, ‘e aaes - - — '(“
| Pestination Probs: asymmetrical N &3
Arbiter Algorithm Rotating | Rotating | Greedy Interval Cross- Com:non }%. ;
s ey e T | .
Access Paths Asym. Sym. Sym Sym. har Bus
.20 oo o :—:'—':- T L Tt T tLTo LA SISy T o ¢ Tt T = Tt oo T Piiegy -r'
leyete/C [ 297221 (283114 (23.752.69| 2481+.56|16.13£.37 |64.05£.03 NS
T 1,/¢ 0.0 0.0 0.0 0.0 0.0 0.0 N
po wep/c [ 145220 [1LI£11 | 85980 9.64x.48| 2.27+.19 [50.021+.33 _..r:
g 2424.17] 2.55£.13| 3.03£.09] 290£.07) 398109 |.9992+ 0005 oA
Tvete/C |1 307216 [29.0210 (2021 88| 28.152.55(20.534.94 164094 11 .9
100 1,/¢ 0.0 0.0 0.0 0.0 0.0 0.0 e
P e 1108217 [9.57£1.19) 6.324.76 8.28:£.27] 1.67+.30 [45.101:.57 s
g 235412 243+£.09( 2.754£.09) 2.56%.05] 1i+.14 | 9984:.002 .’_-f:f
lyeie/e | 305519 3SAEL2 339EL6 | 3642478 | 209413 [obITE6 | AN
7200 1/t 0.0 0.0 0.0 00 0.0 0.0 | .
== 20U¢ =
P ‘ Wepsc || 6.13:£.89] 5.3375! 393876 0.81t.41] 1.OOL IR 348358 ‘{\ '
g LY7£.11] 2054071 2024000 LYSL.04] 215409 | 997£.002 :::.-
e e | S i st B I ,q_.,.L - ——_— - - e — | w
Ievete/¢ [ 611233 1023248 [0L4tdl (6459234 158.622.7 7094238 ::*
T s00c 1y /¢ .0 0.0 0.0 0.0 0.0 0.0 el
P wrpse || 2192490 L86£.22| 1514351 440134 44410 [11.6%1.7 .
8 3 118+.06) 1.16.09 I.l7;t.08L 112406 1.09:£.0571) 90104 O
Table 4.6(a): Ringbus simulation vesults '.:.-::'_
NN
'.‘-'L
l\-.
e
s.\c.
N
~
)
Do
nﬁ.\-‘.
NN
T Rememiber, here g represents the average number of grints i nvogress per round, by which we mean the .:\’:v
average pumber ol grants per round to which one or mcre sepments are allocated, not the average number of \";
grants per tound ubhang segments (hlere we consder o prant to be m progress for the total time that at teast P
one Ringbus scrment s allocated to the gaint Siace ~oraments ivmann allocated o a sunt lor a penod 1,
after the ternunation of the Ringbas dita transtec mesi vrant i o pogress for g tolal aewe of £y, g # Ly ) :.'::.-'
-":\"
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‘..g
e e e o — AU e e e e o e e e+ e e e - W'
Dastination Probs: symmetrical N =1 Q ,',
T T e e e o A
Arbiter Algorithim Rotating Fl{m.ning Greedy | Interval | Cross- Cominon ‘
Access Paths Asvnt Lym. Sym. Sym. _ har Bus pgd!
T /e | 85114 296514 [23.50£.40| 25382 64| 1635210 04.052.03 ‘::",ct
7 ~5.0c 1,/¢ 0.0 0.0 0.0 0.0 0.0 0.0 P '
P wep/c 12321216 (145215 | 8.67+.33110.22+.58| 2.54+.26|50.02+.33 g-:‘
g 1.87£.07| 243211 3.03£.05| 2.84%.07| 3.921.10|.9992+.0005
—-am o e e e e e e— - - - —— e — e ——— —— e e e . — —m - - I i g — = e mam e me—— \
levele”C || 39-14£.74130.6£1.2 (26.751.43128.76+ .58 | 20.63+.64 |64.09%.11 O
C e M 0.0 0.0 0.0 0.0 0.0 0.0 s
p PR wep/c | 1932101 [10.55£.95] 6.90+.66f 8.73+.50( 1.81+.26(45.10%.57 .‘L‘
L 1.84+.03| 2.36%.10| 2.691.04| 250£.05| 3.11£.10( .9984.002 :‘}‘
lepete/c || 41925 |36.354.70(34.4522 |37.211.3 [3017+.71[64.17.16 o
Y 0.0 0.0 0.0 00 0.0 0.0 W
o wep/c (| 124221 | 038+.79| 4.20+.72| 7.05+.48| 1.07+.23|34.83+.58 -".a:_‘
g L7210 19804 2.10£.13] 1.942£.07] 2.12+.05] .997+.002 ;~:.
leyele/¢ || 03747 |62.9%3.9 623131 |65.0£3.2 [59.8+35 |70.912.8 A
5000 /¢ 00 0.0 0.0 0.0 0.0 0.0 s
P NTC knse | 404199 2.194.47] 1.59+.24| 458141 46k 11|11.6£1.7 ':f:}i
2 1L13£.08) 1.15£.07( Lt6x.06] L11£.05] 1.O7£.06] 90+.04 TR
e e el e s - e e
‘Tuble 4.0(b): Ringbus simulation results RN
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Destination Probs: uniform  N-l
Arbiter Algorithm Rotating | Rotating | Greedy | Interval Cross- Common
Access Paths Asym. Sym. Sym. Svm. bar Bus
Fo-T SIT oTSLnomssTT=s To.T. oLl IRt ST (S-S SO Sl R VL ALY Rt ST R Sty
lovele”¢ {47919 1429421 [29.184.80(29.260£ .53 | 10.09£.39|64.054 .03
Pry 1,7¢ 0.0 0.0 0.0 0.0 0.0 0.0
PN gapse (32,5220 27.642.1 [13.954.78[14.014.54] 2.894.35(50.024.33
g 1.50+.00 l.()8:t.08+ 2474.07| 240+.04| 3.84+.09].99924 0005
leyele” || 48.3219 |42.742.1 [31.19£.71|31.814.49]20.771.62 |64.09£.11
- 100 1,/¢ 0.0 0.0 0.0 0.0 0.0 0.0
P = epse 1282422 |22.742.0 |11.314.64[11.89£.70] 1.92+.31(45.10%.57
g 1.49£.06] 1.69£.08] 2.31£.05| 2.26£.04| 3.09£.09| .998+.002
loyete”c [|49.0£ 1.4 |43.8£2.5 (374216 |393£11 [295+ 11 [64.17%.16 3\:
Cooupe W 0.0 0.0 0.0 0.0 0.0 0.0 oA
P wepZe 11192422 113831 | 7.314.63]1 9.23+.30( 1.25+£.28]34.83+ 58 N
g 1474£.04| 1.04£.09] 1.92£.08] 1.83£.05] 2.174.08| 997+.002 :::2
. S | i itoeid B bl It PEIRD SR AR NN
leyele/¢ || 65.9£2.0 |65.4+54 [62.6£34 |65.7£38 (599133 [709£2.8 e
- 500c 1,/¢ 0.0 0.0 0.0 0.0 0.0 0.0 T
PR /e | 6.46£9014.5541.22] 296+.64) 529+.47| S51%.18[11.6%1.7 o
g LO9E.04| 1.10£.09] L15S£.00] L10£.06] LOT£.06| S0+.04 ::3;:'_
- Tttt T - - Tt T T Y

%
v

Table 4.6(c): Ringbus simulation results
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1,7¢
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1,7¢
wWrp/C
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Wiy /¢
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M>I‘(Anl.u|ng R(;(.a(lng T Clk&:i;’ ]
| 4 _ e ———— —
Asym. va Svin.
T00.2%22 | S585427 | A1E14
2514102 | 2291214 | 17.09%£.76
18.1+ 1.1 | 158+14 9.96:+.69

2.39+.09] 2.58+.1 } 3.261.10
593428 | 55.9+2.1 44 79+ 97
20,1215 | 1842+ 87 13.21%.48
173214 | 155210 | 9.80%.52
242:tll 25709 32l:t07
53.94£2.0 | 56.0£22 | 47.541.0
12510 | 11.2+1.0 7.76%.69
148+1.1 132412 8.3124:.36
2.44:t.()8 257+, IO 3.03+.07
714429 | 702422 | 66.5£22
JI0ES5)| 2891591 212443
68610 | 60.04+1.08) 4.12+.44
201+ ()8 2()5:t 07 2.16%. 07
ll49+53 H4 (\+(y‘_ ll2()iS (\
84417 78417 J5L.12
27446 225337 182+.28
1.25%, O{H l.25i~.0;J 1.284:. ()6
S, L .. IS PR

Interval

b ]

bym

4/ 4%l ()

18.701.58

11.66x.52
3.03+.07

47.46% 48 |

14.171.38
11.24%+ .25
RX\RE: K 2]
5().18:1:.82
8.70+.34
10.08+.30
2.80%. ()5
70 81:! 7
Joi1t .42
7.26%.26
203t 05

117 1£5.3
114424
4.83+.39
122_L 0s

Table 4.6td): Ringhus simulation vesults
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8.55+.34
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4.77+.08

28.291 47
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34 ‘:tl |
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9315
99+.17
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12780117
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9998+ .0002
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[Destination Probs: symmetrical N =2
Arbiter Algorithin W Rotating ] Rotating Greedy [ Interval Cross- Cominon
Agccss Paths Asym, Sym. Sym, Sym. bar Bus

)  hgeesc | 773239 | S66%17 | 45.20£.67| 47.92:£.00) 27.36:£.42|127.804.17

T =S.0c 1,7¢ 33618 233+ 841 17.7212.43( 1897 .61 882+.27) 58.71+.30
p o wepse || 20,619 | 162683 1056321 11.93+.467 3.511.25] 53.841.02
I 1.80£.09] 2.541.07) 31805 3.001.06) 4.67x.08] 99981.0002
)‘._“.,(./'(- 76435 | 56.9x1.1 | 4527192 48.48+.75) 28.82+.54|127.77+.18
T 10.0¢ 1,/¢ 283417 | 18.97x.68| 13.322.60| 14912.51] 5.79+.38] 53.71+.51
po TR wrp/e | 260218 | 16,0471 10.062.427 1179235 3.211.337 S3.80+.04
2 1.88+.09 2.53+£.05( 3.18+.06 296x.04| 4.43+.09; 99961.0003
b — o — s e - U U U U U S [ - E—— - - [ e
leyete/C || 180232 | 58.7£2.3 | 48.30+£.54) S1.51£.57) 34.52+.741127.78+.30
T 200 1,7 211216 | 12414 3.02+.41] 923567 297+.33] 44.041.59
p e wepse 25417 | 148%1.4 8.842.19] 10,7412 .40 2.31+£.23] 53.40+.13
g 1.842.07] 245£.10] 298x.03] 2.79£.03| 3.70£.08| 999410006
fopete/c ] 82318 | 71213 | 672117 | 707213 | 61.4%18 1128.05%.34
i 50.0¢ 1, /¢ 6.19£.82) 3.114.52) 2.29+36] 3I8+.19 93+ 08| 22.1+14
p R wep/c | 14610 6.89+.74| 4.52+.51 7.76+.44) 1.03+.11]45.78+1.04
g 1752041 202+.04] 2142051 2.00x.04] 2.08x.067 .998:4.002
;(..,.(.[(./(' 117.0£49 |114.2+£2.6 [112.6£3.6 |116.4442 (110.8+58 [133.3+1.8 -
o 100.0c 1,/C L174.26]  81£.02] 72+.13] L1718  42::.07| 4.16£1.3
P IO /e 470+ 687 276450 19112080 SOCR+.33] .S2+.10) 194428
o 123405 120,031 128041 1.23+.04] 1.15:.06| 958+.013
‘T'able 4.6(c): Ringbus simulation results
.~ AT TR AT T A e e P N CERPC AR 70 1 S S CO R R AT SRR N e e T N
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Rotating | Rotating | Greedy
Asyni. Sym. - Sym.
90.542.8 | 8$5.2424 | S6.0%1.2
432414 | 37513 | 23.031.78
J6.2+14 | 30.6£1.2 | 15991 .6l
1.49£.041 1.09%£.05( 2.50%.05
97.2+3.7 | 848133 | 5048+ .83
BOox19 | 324121 18.79+ .60
365219 | 30.2+18 | 1570+ .47
14806 170071 2.54%+.04
97.5+2.1 | 84.6+34 T 57.82+ .85
298+14 | 24115 | 12.371£.70
5613 | 28919 | 1411406
147£.03] 1L70x.07] 2.49+.04
97.7+£25 | 86.9+25 | 73.0£1.3
11.4£1.7 792+.85( 3.68%+.54
252424 | 179420 8.15+.57
1.47+.04] 1.65+.05[ 197+£.03
121.3£5.3 [118.1+4.6 |114.2£3.3
1.834+.49 138x.24)  1.OOL.2S
8.0+1.5 STiE6L| 3.57+£.23
1194205 1.222.05] 1.26+.04

‘Fable 4.6(f): Ringbus simulation results

Cross-

N2
WCon-lmmi -
" Bus
1275017
58.71+.30

53.84:.02
9998 £.0002

127.77x.18
537151
53.80+.04
2999610003
127.78+.30
44.04+.59
5340£.13
9994 £ .0006
128.05+.34
22.1%14
45.78%1.04
998 +.002

1333+ 1.8
41013
194428

- Inn.lcrvnl» »

Sym. bar
STAELO | 28014.69
2348+ 54] 9.18+.34
1646+ 47| 3.84+.32
252405 4.57+.1 w
57.47+ 85| 29.35+.70
1912492 6.13+.42
16,32+ 44| 3.54+.30
250103 4.36+.10
S8.61E.63] 35.1+1.1
1253+ 68 3.14+.35
1461+ 44| 2.58+.30
245+.03]  3.064+.11
748412 | 60.7£2.1
413+ 47 101L.14
996+.22{ 1.19%.14

1.92+.03] 2.11£.07
1187452 [109.7£5.5

145+ 30|  .42:+.08

625381 S0+.13

1.211.@ 117406
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I

.'*4"

)

“Destination Probs: .nsymmclru.al N 4 ;:-f.
/\rhuu Algmllhm L Rot mng R()laling (llCCdV lnlcnul Lms\ - Cummun ¢.4.]
/\LC(,\'\ I’-lhs Asym Sym S)m Sym. bar Iius N,
P - ...'..:TZ = = - = - Py T = . P - f.'
m,‘/. TIS4£3L 121423 | 88414 | 981£10 | 5334277 255.114£.30 o

T =500 1,7¢ 835423 | 78.7+£1.8 | 61111 | 6524+ .80, 4.82+.56/185.58+.25 :::\_
P IV /e || 17.65£.77] 16.091.61| 10.14£.35| 11.56£.25! 3.36%.19] 53.93+.01 N
3 243+, 0() 2.56%. ()S 325205 3.05%. 0\ 4.781.07| 9999+, ()()()l S

m,‘/( 1179240 [111.24£39 | 880216 | 937115 | 53214.65]254.99% 42 o
- 100¢ 1,7¢ 781431 | 729430 | 55713 | 60.0£1.1 | 29.73+.060/180.45+.53 Sy
P IRNC T e/ | 176210 | 159210 | 1004£.39] 1149437 3324.16] 53.92+.01 -
8 243%. 08 2.58%. 0‘) 3.20%. ()() 3.06%. ()5 479406 9‘)‘)8j: ()()()2 ‘-’_-\'.'

s/ || 1182246 [1111£29 | 88517 | 94012 | S3.78%.80|254.95 4 =y

©oggpe M/ | OBAEIS | 028423 | A0IELS | S0.13E861 20285 88117027469 e
PO ez | 17,6212 1 1ST8ETH 100143 1152429 3.24£.20] S3.90£.02 o
8 2.4..11.1() 258+ 07| 324x.00| 3.05+£.04| 4.74+.07] 99981.0002 "-.:\

—— — _———— - .. - - - .- . e - - - _—— - - . - - ‘I.
lexcle e 87435 1122430 | 9233168 98.0+1.4 | 67912 [25503+.22 g

50,0 1, /¢ 39.9+2.2 | 353229 | 21.7%10 | 25.00+£.85| 6.33+.60{140.3%+2.2 AT
PO /e | 16552821 1473198 890431 10.77+.32] 2.20:£.18] S383+.05 N
g 242£.07| 2.56.07] 301£.02] 2.93£.04] 370%.07| 999430004 N

et /e | BLT22.6 11279623 11221220 (1275229 [N25%225 | 2553471 A

ob0e  M7C || 10320 PESIEL2 | SSSET7| 806£.94)  186+.20] 91610 L
r T ense || 939E133 777499 494£37] 824250 109:E05) 52.56%.39 ...
I 21805 2.74604) 235k 00) 225105 227405 995001 RS

Tt 7c | 2IA5ET6 (2148482 12142287 [ 2186247 [2069£92 2500427 e

e e L7021 1524070 137409 232430 72207 177432 e
PR epse || 299842 260445 1.95£.22] 529431 .S1E.04] 30.1£3.0 N
g 1,342k ()5 1.34%.05 I 405 1. ’H:’- 03] 121205 985+, Oll) R

Tablc 4.6(g): Ringbus simulation results :::::
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Destination Probs: symmetrical S N
Axhuu Alg,m nhm Il Ru((mu;, I(ul.umb Greedy lnlurval Cross- Lomm(m
Acuss l’ulhs /\svm Sym. Sym. _ M_Sym Imr Hus
T T e [ 1541229 1138235 | w9.8£12 | 958£1T 541958255 11£.30
7 50¢ 17 || 1104222 | 80.1£2.6 | 62.02+.84| 66.58+.84| 35.44+.45{185.58+.25
p = wpp/c i| 2663171 16.52+.85] 10.48+.28| 12.004£.28) 3.57%.14| 53.93+.01
g 1.86£.03| 2.52+.07 320+.04| 3.00%. 04 471t. 05 9999+ OOOl
leyele /€ 15’ 9:1:5 l ll4.3:t3.5 89.6+1.0 ‘)S 9%1. 3 54 12 [254.99+.42
© 100 1,7¢ 1041237 | 753126 56.9+.68| 61.6+1.2 | 30.52:£.78|180.45+.53
(e wepse | 263213 | 16.651.84] 10.432.26] 12.02+.31) 3.601£.29] 53.92+.01
Y 1.88£.06| 251£.08F 3.20+.04 2.‘)‘):&:.04 4.691.10| 9998+ ()002
/, ,‘,, /( 1542444 1149426 89, 9:tl 3 ‘)().241.99 54, 99+ .64 254 95:t 45
T 00c 1,/¢ 95.1+3.3 | 65.7x2.1 | 47.05£.72| 51.66x.78 21.00+.811170.27+.69
p wppse | 266210 | 16.77£.64| 1049£331 12.08+.24| 3.54%.18| 53.90+.02
g 18605 2.50%+. 05 31905 2.98+.03( 4. (»41 O(, 9998+ 0()()2
m,l/< I54 1:1:14 ll()();t45 940:tl 2 99, 9:!:1 3 ()8 S+l 1 255 03, 2
i -50.0¢ 1u/C 65.33:2.5 | 372.7£35 | 22.5%1.) | 206.8:k1.3 6.44%.54[140.3£2.2
r e WRR/C 26,191 158+1.3 944+.27| 1144+ 28 2.44+.16| 53.83+.05
g 1.86+.04 247+.00 105+.04| 2.87x.04| 13.73£.06] 9994+, 0004
levele /¢ 157.942.7 1 130.2+3.1 121 3429 [128.4+£2.8 {112.6£2.5 | 255. 3.}: b2
- 100.0¢ /¢ 258434 | 995417 6.13+£.721 8.53+.65| 1.98+.18| 91.64:3.6
. e wepse [0 204812 | 93012 5.58+.53{ 8.67+.19] 1.19%.09: 52.55%.39
g 1.82+.03| 220% 05 233+, 00 2.231.0) 227+£.05] .989+.001
] ,u/‘/( "19)_:1:55 2]5 3:!.78 2157190 2186173 ’H4+() 25‘)0:!:77 1
T 2000 1,/¢ 284:£701 162301 1.371.24| 2.35+.27 J1£.08) 17.7£3.2
P e Wrp/¢ 5.95+.83 3.00+.30y 2.11£.20] 5.50%.27 S55+.07] 301210
g 1.31£.03 133405 13306 131+£.04( 1.21%.04| .985+.010

‘T'ablc 4.6(h): Ringbus simulation results
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Destination Probs: uniform

Arbiter Algorithm

Integration and Simulation

Rotating

) Rotating

1, =5.0¢

Access Paths

193.5x4.1

/e ||139.5£3.0

wepsc | 365210
g 1.48+.03

’('_)_'cll'/ ¢

f,, =100¢

7,, = 20.0¢

l—,, =50.0¢

;:,, = 100.0¢

U C— .

193.743.3
1,/c || 1348425
wen/c || 36.57+.82

g 14802

’(‘:\"clv/ (3

Asym. L

Sym,
170.3£2.8
122.31+2.2

30.68+.09
1.o8+.03

170.0x4.7

H6.9x3.5

J06xl1.1
1.691.04

193.6+2.3

f,/c 111244220
Wepse || 36.48+.61
g 1.48%.02

’('_.\'(‘h'/ ¢

193.5+4.1

1,/C 94.31+4.4

wRp/C }6.3x1.1
g 1.481.03

! tjl';‘l('/ ¢

171.4£3.1

108.0+2.4
31.0+.74
1.67£.03

172.1+£39

787133

308x1.1
1.67+.04

193.0£4.9

48.41+4.0

wppse || 322116
g 1.49+ .04

Teyete” €

1,/ C

b i

7,, =200.0¢

228.0:5.1

1, /¢ 5.15£1.5

wap/c 10.7£1.7
g 1.26+.03

leycte”C

171.2+6.4

34744

25.2+19
1.68%.00

2208468
343466
7.00+.82

1.30£.04

Greedy

Sy,
1HI9ELS
78.5%1.1
16.024.39.

112.2x1.1
73.66x .94
16.10+.24
2.50x.02

112,41+ 1.5
61.5+.81
16.061.35
2.56+.03

1139+ 1.4
3J6.6%1.8
15.22+ 48

2.58+.03

132.3+1.8

10.944:1.3
10.02:4.42
2.17x.03

2.05+.39
AA'RY XY

1.33+.04

Interval

" Sym.
114.20%.95
80.26x.64
16.611.21
2.511£.02

o e e —

114.0%1.2
75.05+ 91
16.57+.28

I 2.52+.02

114.1+1.0

65.2+1.2
16.59+.23
2.514.02

1159417
37.8%18
15,794 .47

247403
135.8.£2.2
12.674.99
11.654.27
211£0

M1IES.6
2.94% 40
6.82+.23

Cross-
bar

Ssell
3.53% 74
3.93%.26

4.59+.(v

55799
3l.6x1.0

394+.25

4.58+ .08

56.28% 80

22010
189+ .20
4.53+ .00

69.321.0
6.62+.60
2.58+.24
J.O8+ .09

1132129
203+.13
132110
2203006

2064113
T34.13
60+.07

1.30+.03

Table 4.6(i): Ringbus simulation results

N ~4

[ Common

185.581.25
53.93+.01
99991 .0001

254991+ 42
180.45%.53
53.92% .01
99981 .0002
254.95+ .45
170.27£.69
53.90+.02
9998:£.0002

255.03+.22
140.342.2
5383+.05

255.3£.71
91.6+3.6
52.56.39

2590427
177432
30.143.0

l.21.t:.()6L

985+.010

‘The results in ‘Tables 4.6(a) through (i) indicate little variation in the performance with dif-

ferent access paths and arbiter algorithms for light loading, as one would expect. and kirge varia-

tion in the performance for heavy loading. These variations in performance for heavy loading are

ilustrated in the following table of the throughput with 7,, =5.0¢ relative to that with rotating
priority and asymmetrical access paths.
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I Arbiter algorithm (Sym. access paths) | |

Dest. Probs. Rotating Interval Greedy Cross-
T Asym. s | 1% | 0% | 4%

N= Sym. 23 34 38 58

Uni. 10 39 39 05

Asym, 7 21 27 56

N = Sym. 27 38 41 65

Uni. 12 41 42 7

Asym, 5 21 25 S5

N =4 Sym. 26 38 42 65

Uni. | 12 41 4 71

Table 4.7: Percent increase in throughput for 1, =5.0¢ relative to that for

rotating priority arbiter algorithm with asymmetrical access paths

The figures in ‘Table 4.7 indicate that the Ringbus throughput can be increased 20 to 40% in
heavy leading relative to the throughput with the rotating priority arbiter algorithm and asymmctr-
ical access paths. In other words, the throughput of the actual Concert systent can be improved in
heavy loading by at lcast 20 to 40% by using a better arbiter algorithm and symmetrical access
paths. By comparing the improvement in throughput with rotating prim'il'y and symimctrical access
paths with the improvement an throughput with the interval or greedy algorithm (both of which
yicld about the same performance) and symmctrical access paths, we can see that the chinge from
asymmetrical to symmetrical aceess paths accounts for 175 to 174 of the improvement with asym-
metrical destination probabilities, about 174 of the improvement with uniform destination proba-
bilitics, and over 12 of the knprovement with symmetrical destination probabilitics.  Interestingly,
the improvement in throughput with the interval and greedy algorithims (with syminetrical access
paths) remained about the same for both unitorm and symmetrical destination probabilitics, indi-
cating that the improvement in throughput contributed by these algorithms also changes with the

destination probabilitics but in an opnosite manner o that contributed by the symmetrical access

paths.

For general destination probabilitics we cannot draw too many conclusions from ‘table 4.7
besides that the throughput can be improved by ot least 20 0 40% and that both the degree of
improvement and the relative contribution of the arbiter algorithm and symmetrical access paths
depend strongly on the destination probabilities. Table 4.7 does give some idea though - which of

course nust he balanced with the costs - of the relative advantage of different arbiter algorithms

and acccess paths.

Another way to characterize and compare the performance of the various arbiter algorithms
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Integration and Simulation 261

is by their saturation throughput i.c. the maximum throughput achicvable, “This is a particularly
uscful and convenient way to characterize the performance because the saturation point depends
only on the arbiter alporithm and the destination probabilities. Table 4.8 lists the saturation

throughput £ (in mean nunber of grants in progress per arbiter clock pcriud*) with the various

arbiter algorithms and access paths considered in this section.

Algorithim Access Path _I)cslinuti_(zlt’mhs.

Asym. | Sym ygi.
ba;mmonbus “;1_/;1 ] ’_:_ﬁ):: :_l—i)-: —i(i_ i
Rotating Asym. | 24 | 19 [1s
 Rotating Csym. || 25 | 25 |17
Tnterval  Sym. || 31 | 30 |25
CGreedy  Sym. || 33 | 32 |26
(ST R7a T A

Tablc 4.8: Saturation throughput for various

algorithms and destination probabilitics

Table 4.8 shows clearly the relative ordering in terms of threughput in saturation of the vari-
ous arbirer algoritiums and wceess pauths considered. Note that Table 4.8 also shows clearly that the
saturation throughput decreases as the destination probabilities change from asymmetrical o sym-

metrical to uniform.

In all the simulations the greedy arbiter algorithm yiclded better performance - although not
by much - than the two phase interval algorithm. This was a slightly surprising result considering
that, extrapolating from our finding with four slices and pg =0 in scction 3.4, onc would expect an
intcrval algorithm to be optimal for hcavy traffic. On closer examination this result is not so
surprising. Presumably, the result is a conscquence of the nonzero arbitration time. As alrcady
mentioned, the single phasc interval algorithm yiclded poor performance duc to the idie interval
during which no requests are granted. 'he two phase interval algorithm is a simple aucupt to util-
ize the Ringbus during the idle period, but it has the consequence of causing additional request
coiflicts because one phase follows the other by less than the duration of the grants. !deally one
would like the phases to be nonoverlapping but this has (he drawback of imposing a minimum
wait of une phase (the duration of a grant) until the next request can be granted at a slice after
the previous grant at that slice terminates. Thus therg scems to be no way to avoid some sort of

performance penalty due to the nonzero arbitration time when implementing an interval-type

T As before, a grant is considered to be in progress for the total time that at least one Ringbus segment is allo-
£ . { (5 [ g
caicd 1o the grant.
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262 Integration and Simulation

algorithm. This suggcests that it is important to inctude the effect of nonzero arbitration time when
trying to determine an optimum arbiter algorithm for the actual Concert system,

‘I'he interval algorithm suffers from anodher disadvantage: in light traffic the synchronization
of the requests with the phases adds to Uie total waiting time of a request. In some cascs with light
loading, the throughput with the two phase interval algorithm is actually less than that of the
rotating priority algorithm with symmetrical access paths. This suggests the obvious: for best per-

formance the arbiter should be able to change algorithms to adapt to changing load conditions.

. . NS - .
Imic overall throughput of the Concert system is ——— where /., is the mean cycle time of
’cyclc
a single processor. (Recall that feyege =1, + Bty + ly, (1 # BU(1 ~ ¥V apsp +¥lag)) As a function

of t—p. the overall throughput is maximum at I—p =0, monotonically decreases as ?}, dcercasces, and is

. . . 1 .

asymptotic to a curve in the family -—. Because of the nonlincar asymptote of the overall
Ip

throughput it is more convenient (o deal with the mcan cycle time, for which an cquivalent state-

ment is: As a function of 7,,, leyele 1 Minimum at 1, =0, monotonically increascs as l—,, increases,

and is asymptotic 0 Ly =1, + B, +(1 # U1 ¥ )aprp +989™ ) This leads to the following

simple first order approximation of the overall throughput as a function of l—p:

~(norm) -min

;;-'}2;1- for 1, FBL -+ (1 FBX( - Wump F ¥R < I5cle

=1 - - - 4.1
lopete G+ Bl 4+ BN = Wlapn +IRF™)  otherwise “-.1)

foyele i the value of 7o, when 7, =0 (and all other parameters fixed). Equation 4.1 is a con-

venient approximation since it depends only on one parameter, l(r)"t','} aside from the fixed input
parameters. Furthermore, £y can be related to the Ringbus throughput when 7, =0 - which we
{, =0
denote by g? - as follows.
First, when l_,, =0 a request from a processor must wait for the requests of cach of the other
N -1 processors to complete before it must proceed. flence

m

loyete =By + N(L+BX( = ¥)amp + ¥larn)

Sccond, recall that 1,0 =wgp +d, and thus

_g_’__ _ S o Y
d <o -
-l—:;; +wpp+d ———- t LR B

(Note that 1,5 is not the same as LEY™ since Grg is a function of the Ringbus loading.)

Ihird, the mean spacing botween the termination of one Ringbus request and the arrival of
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. . o . (1-¢) - .
the next Ringbus request at the same shice, 1o is cqual to ———I-«— i - Pherefore
—Po
2?0 s Sy .
; = T -— =—>i - =—- from which it follows that
—{) - - ~ YVamp + 1
¢ ______laA’B f"ﬂk” ( .P) aM B ‘P aRB
Yy
—mi - (1+BWNSd
leyete =Bl +-‘——’f—"£’3— 4.2)
(4
. 1, =0
(provided that g #  #0).
If the Ringbus throughput is saturated when };, =0 (note that it nced not be saturated for
t =0 P
small cnough ), then g7~ =g® and AN
r."::
= e
- mi - (1+BWNSd AN
min -7, (LLBY 4.3) e
8 roe
P
. r, =0 . '
Note that while g" may depend on B and . g™ docs not. Hence cquation 4.3 allows the
determination of l:‘;l'[':. as a function of B, ¢, and N provided that the Ringbus remains saturated e
for 1, =0. ';
..'f
Note that cquations 4.1 and 4.2 also allow the results obtained in this section for #=0 and sier
¥ =1 to be extrapolated for other values of f and . ’ -
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o
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204 Integration and Simulation

4.4 Simulation 11: The Actual Concert System

In this scction we present the results of a scries of simulations of the actual Concert systemn,
as itnplemented, in order w give some idea of the performance of this system and how it varics
under the influence of various parameters. ‘The simulation model and the manner in which the
simulations were performed is the same as for the siimulations in section 4.2 and 4.3, All the

assumptions and parameters are the same as those listed in section 4.3 except for the following:

Ringbus arbitration algorithm; rotating priority (counterclockwise priority rotation) as in Concert
Access paths: asymmetrical as in Concert

Ringbus destination probabilities: asymmetrical (as listed in ‘Table 4.5). We take these probabilitics
as asymmetrical to show the Ringbus (with asymmetrical access paths) in its best light and to
correspond to the expected asynmunctrical bias in the request probabilities. We expect that most
applications will be structured to ke advantage of the more favourable clockwise direction for
accesses, implying an asymnietrical bias in the request prababilitics.

Ringbus access probability: We take ¢ --.2, 4, .6, and 8 to illustrate a range of operating condi-
tions. Notc that the performance with ¢ =0 (no Ringbus accesses) is given by the isolated Ringbus
model of rection 29 and the performance with ¢ =1 (only Ringbus accesses) is given by the
results in section 4.3,

Arbiter clock period: ¢ -: 200nsec.

Multibus access time distribution: We assume a deterministic access time with duration 1 10pusec
=5.5¢. (We arrived at this duration by assuming that all the Multibus accesses of a slice are
dirccted towards the slice giobal memory and that the Ringbus port of this global memory is
lightly loaded. In the actual Concert system, the mean Multibus access time of slice global memory
is about 1.10uscc when the Ringbus port is heavily loaded and about 1.05uscc when the Ringbus
is lightly loaded. (Sce section 3.3 of Appendix A.) Thus our assumed 1.10pscc duration is slightly

pessimistic for most cascs.)

As before, we assine the start up time is 7¢ro i.c. 1y, — 0. there are no long word accesses
ic. 8:.0, the Ringbus data transfer time is deterministic with duration  -:7¢, and the Ringbus

arbitration time is deterministic with duration 1,5 = 2c¢.

The simulation results ace listed in Tables 4.9(a). (b). and (c).




‘Table 4.9(a): Concert simulatioqn results
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[ Y AU | -___Lz_ .,__.-.'i.._ . v_____'{,_, S S ‘.8 e o
locle/c || 1188147 | 1452464 | 1935£98 | 24316

i =5.0¢ 1,/¢ 0.0 0.0 0.0 0.0

P Wrp/c 2.50%1.3 573126 | 9.84x1.40 124+1.38
g 1.22+.15 1.94£.09 2.28+.12 2.39%.12

leyele”¢ 17.0+14 18.82+.88 | 22.06+.61 262412

¢ - 10.0¢ 1e/¢ 0.0 0.0 0.0 0.0

P WRR/C 149+.88 | 3.71£1.03 6.26+.94 8.55+1.0
g 83+.17 1.521.14 1.98+.11 2.224+.09

lepcle”c 26.5%1.2 27.83+.89 | 30.1%14 329%1.0

7 2000 1, /¢ 0.0 0.0 0.0 0.0

p R Wpp/e 84156 |  1.80%£.63 | 3.03+.79 456x1.4
g 5606 1.03+.09 144+ .07 1.76%.07

— 56.314.6 58.8+3.2 59.2+40 61.4+3.1

T 00 1,/¢ 0.0 0.0 0.0 0.0
p =T Wrp/c 30+.20 I3+48 | L12£.22 1.624.24
g 24+.03 A8+.05 742 .06 94£.05

Tovele/C 10554107 | 109.5£8.3 | 111.0£7.3 110.1£8.0

- 1y/c 0.0 0.0 0.0 0.0
p = 1000¢ Wrp/c 1615 281,10 S22 J9+.22
g 1410 2604 391,04 5305
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Al
1 Y S o
- e i Ly Yoot
'3 ‘ 2 4 6 ]
- C lgeesc || 1633297 | Mox22 | 35318 | 4824l :’E v
C S0 1,/c 378440 | 7.74%1.13 12.984:.90 19.242.1 }
P Wgp/c 4.66%1.16 104424 14.0%£1.6 16.8+1.8 by
g 1.79+.09 232416 245+.16 2.39+.14 o
— e b b e e e ——— -
leyele /€ 19.69+.54 |  25.8+14 36.2%1.7 478438
7~ 100¢ IW/¢ 227+.22 494+.68 9.65+.67 149138
P Wiy /¢ 3.50+.92 8.09+1.56 12.9%1.1 15.6+2.4
g 147411 2.20+.10 237+.11 2.42%.20 T
leycle/ 27.99+78 | 322412 39,1420 49.1%14 Y
7 200c W/ [.18%.09 2.34£.26 485+ 1.13 8.78+.69 =
p = O W/ 1.88+.44 | 495119 | 880%148 127+1.0 N
g 1.03%.07 1.774.06 2.19+.08 2.35+.07 N
e et N | B e R it e LRl e o
v 57.9+2.5 58.5+2.8 61.5£3.0 65.8+2.1 NN
- 500 1o/ 42+ 05 69409 L15%.16 1.97+.44 X
p BN T 6827 1.60+.27 31166 493+ .97 .
g S0+.07 98+.06 1.40£ .07 1.74£.05 R0
leycle 107.3£5.8 108 2+5.2 109.6+5.7 111.6%6.1 .::_Z::_
o 100.0¢ /¢ 22:+.05 314.07 44110 61£.10 :._;‘.;g
p o B W/ 3317 84431 1.29%.17 1.90::.21 ol
g 28403 53:.04 J9:£.06 103105 o
lesele< 2005:298 | 20811102 | 2104£160 | 2102+4) i
- 000 1,/ 10+.03 1507 20+ .04 2306 hat
P Wepsc N +.07 J9%.14 03122 80£.13 S
g | 14401 2802 | 41104 55:£.01 I
_ . g el et T s
Table 4.9(b): Concert simulation resuilts A
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leyele /€ 30.50+ .94 194429 73.1+2.5 95.6:£1.8

T 500 1/c 17.674.63 | 318122 49.5+1.9 066.3+1.2
p= WrR/c 565£.90 | 1L75£95 | 1549%.95 1694+ .58
g 1.88+.06 2.341.07 2.38+.08 2.40+.05

leyele/€ 30.7£1.2 49.2+3.1 71.7£4.5 94.7+3.3

 100c /e 1292+£.75 | 267424 43.5+35 60.62.4
L WRR/C 5.26£.99 11.5£1.5 15.0£1.3 16.64£.93
g 1.89%.05 2.35+.09 2.40+.08 2.43+.08

leyele”C 34.31.1 49.742.4 71.5%39 95.3+3.4

7 —200¢ /¢ 6.761.74 17.5%1.6 33.543.0 51.3+3.1
P Wrp/c 4.16+.85 10.3£1.0 14512 16.73:£.93
g 1.68+.07 2.32+.07 241+.08 241+.07)

leyele/C 59.3£1.9 64.5+24 77.3+2.1 97.1+3.7

T —s00¢ 1,/c 1.94+.24 4.73+ .41 12.3+1.0 25.2429
p = Wrp/c 1.85+.40 5.00+.64 9.86+.97 14.241.2
g 97+.08 1.79+.06 2.231.05 2.361.06

leyele”€ 107.745.0 1109125 112.6£3.5 119.9+4.4

. 1000¢ ty/c 8011 1.34+.15 2.59+.32 5.324+.98
P W p/C 80+£.16 1.90.37 37537 6.33+.79
g S4:£.03 1.03£.03 | 1.53+.05 19106

leyele”< 207.6L6.3 208.1%5. 212.0£9.2 2120494

T -200.0¢ lerc 34407 52+.08 78413 L0S+.14
P g pc 3614 84+.21 1.43:£.26 2.03%.20
g 27+.03 55+.03 82:£.04 1.08:£.05

lyete”C S07.7£13.5 | SI1L.9+18.5 | 509.9+15.6 511.7+26.2

T 500.0¢ 1,/c A3£.04 18+.04 22403 28+.04
P wgp/c 15+.06 28+.04 A47£.06 64+.08
g A1£.01 224:.01 34101 45+.02

‘Table 4.9(c): Concert simulation results

Examining "l'ables 4.9(a). (1), and (c) we can sce that the mean total waiting time (or wasted

time) per cycle - given by 7, +i,ap - can be quite large. This waiting time is largest. naturally,

for a given set of paramcters when the overall throughput, and the Ringbus throughput in particu-

lar, is saturated. We can derive a necessary condition for the saturation of the Ringbus throughput

as follows.

First, the overall throughput must be above the "knee point”. Referring to the approxima-

tion in cquation 4.1, the overal! throaghput is above the knee point when
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- - - ~mi NSd
bt (1 - Wiaun + VIS < i = YN 44
P

—- P .- - — — .- t :0
(Recall that foyee < I + by + (1~ ¥Mapsp +¥larp) and Takn 2 1889m) ) Second, g7 must cqual

™ Therefore a necessary condition for the saturation of the Ringbus is

- - - le‘“
b+ (L~ )iy + Wiy < Y34 @s)

or on rearranging

- - NSd - -
Ip +lams < W Z:,;,—,‘ #lamb — RS (4.6)
In Table 4.10 we list this incquality for various vatues of N and destination probabilities in
the actual Concert system (i.c. 8 slices, rotating priority algorithm, and asymmectrical access paths)
with 8 0. Note that d =9¢. Tprg =5.5¢, and L34%™ = 10.5¢ (from Appendix A) independent of
the destination probabilitics.

Destination Probs. N F3uid Nccessary condiqon for saturation
- — bhphug N
Asymmetrical 1 ~2.4 2 155<25¢
Ky
lp .
2 ~24 -+ 5.5<55¢
1
4 ~24 2 455<115¢
C
l,
Symmetrical 1 ~19 2 +55<33¢
C
Iy
2 ~19 L +55<71¢
K3
Ip
4 ~19 L 155<146¢
C
1
Uniform 1 ~1.5 2 ,55<4dy
C
;P
2 ~1.5 —c—+5.s<9|4«
p
4 ~15 2 +55<187¢
C

Table 4.10: Necessary conditions for Ringbus saturation in the actual Concert system

Opcration in the saturated region of throughput is undesirable because of the associated
large waiting times. Incquality 4.6 provides a means to adjust paramcters to possibly avoid opera-

tion in this region.
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Chapter S

Conclusions

Since conclusions specific to the Multibus and Ringbus have alrcady been presented, this

chapter covers the genceral conclusions that can be drawn from the research in this tome.

We can now address the three questions raised in the Introduction.

What is the performance of the Concert Multiprocessor?

Wc can still not answer this question directly because the performance depends on the
models employed (which may be dictated by the application programs) and the maodel parameters
(which certainly depend on the application programs), However, we have developed techniques to
determine the perivrimance. Assuining the simple processor mode! presented in Chapier 1, we
have shown how to determine analytically the performance, using throughput as the metric, for
any Concert-like system. This analytical approach involves decomposing the overall system into
Multibus and Ringbus subsystems, which may be modcled in isolation using the modcls formu-
lated in Chapter 2 and 3, and then integrating these models, using the procedure in section 4,22, to
determince the throughput. ‘the integration procedure is in fact an approximation based on maich-
ing the first moments of the interactions between the Multibus and Ringbus models, More accu-
ratc results than this procedure yiclls can Lo obtained via simulation. Simulation is also the pre-
ferred method to include features which are difticult or cumbersome to handle in the analytical

modecls and to allow sizcs - such as cight slices - that are too complex for the analytical approach.

The performance of the actual Concert system with cight slices has been established for

some different parameter scts by the simnlation results presented in scction 4.4,

Why is the performance as it 8? What factors influcnce the performance?

The performance of Concert, as modeled in this thesiz, depends critically on the parameters
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270 _ Conclusions

of the simple processor model. ‘The performance is especially sensitive to the mean processing
time, 7,,. and the probability of a Ringbus access, .

I'he effect of different Ringbus architectures and different Ringbus arbiter algorithms on the
performance is small except when the Ringbus is heavily loaded, in which case these fuctors can be

significant.

How can the perfonmance be improved?
There are two orthogonal ways in which the performance can be improved:
1) change the physical structure, or

2) change the input parameters i.c. change the characteristics of the application pro-
grams.

The more obvious changes in physical structure have alrcady been discussed in the conclu-

sions of Chapter 2 and 3. An important part of the work in this thesis has been establishing the

ultimate perfonmance that can be attained with Ringbus-like schemes.

The desirable changes in the input parameters arc again rather obvious: localize the process:
ing as much as possible. However, the work in this thesis enables the quantification of the perfor-
mance improveinent resulting from any change in the input paramcters. Such quantification is

important: it serves as a dircctional derivative in the performance-action space.

Onic activity is still required o complete the first cvcle in the iterative process oi performance
modeling: a comparison of the predicted performance, based on the simple processor with param-
cters obtained from actual programs, with the actual performance obtained with the same pro-
grams. The purpose of such a comparison is to establish where the processor model and other
models need the most improvement and perhaps how to improve them. Certainly, the processor
maodel needs o be more specific and more oriented to the application program. As discussed in

Chapter 2, higher level modcls should be considered in future cycles of the modeling cffort.
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Appendix A

Measurement Details

This appendix describes how actual measurciments of processing, recovery. access, and wait-
ing tmes were obtained. ‘These terms are defised in section 2 (as well as in the main ext) for

convenience. Mceasured access tmes under dificrent conditions are given in section 4,

1. Background

Three types of Multibus and Ringbus accesses may occur: byte (8 bits). word (16 bits), and
fong word (32 bits). A word access consists of two simittancous byte accesses (a high byvic and a
low byte). Conscquently, byte and word accesses are indistinguishable o an obierver ol the Mul-
tibus or Ringbus unless the observer examines the BIENT (Lyte high enable) signal on the Mul-
tibus (sce the Multibus 796 specitication [14] tor details) or the BYTE/WORD signal on the
Ringbus (see Anderson [A2) for details). In particular, a byte and a word have the same access
time distribution.” A long word access consists of two consceutive word accesses {since the Mul-
tibus and Ringbus are 16 bits widc).

Timing diagrams for the three types of accesses are given in Fignres Al and A2, The
Jiagrams depict the essential features of the Ma'tibus operation from the pomt of view ot the pro-
cossor originating the access. ‘The relative duration and tuming of the signals shown s only
approximate, BREQ™* and BPRN* 1cfer 1o the Malabas request and grant sighals for the ori-
ginating processors MRDC* and MBTC™* reter to the Multibus read and write signals respee-

tively: and VACK * refers to the Multibus acknowledpe signal.

+ We assumie that the time differenee between dozodme @ bvie and 4 word access s ncehigible Measuiements
made on the Malobus and Ringbos wiih only o socte pore o the daal poc memony toided sepport this iesump-
not (see weiton 4} We see no ranan Tor our hndings e this matter o change when both memory ponts are
loaded
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BREQ®*-

— JE—
L T Y
_ i

MRIX™ -
I o
XACK* L] Nt

BPRN*

IFigure A.1(a): Byte and word access - read cycle o
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Figure A.2(b): Long word access - write cycle
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Note from Figures A2(x) and A.2(b) that control of the Multibus (and hence of the

Ringbus) is relinquished between the successive word access of a long word aceess.

2. Definitions

Ail the following quantitics arc defined with respect to the rising edges of BC1.K * (the Mul-
tibus clock signal). Let the Multibus request and grant signhals for processor 7 be denoted by
BRIEEQ;* and BPRN;* respectively.

‘The processing time, denoted by 1, for some processor 7 is the interval between the first ris-
ing cdge of BCLK™* after BRIEEQ;* goes high at the end of an access o the first rising cdge of
BCLK* after BREQ;* nest goes low. In the case of a long word access, the end of the second
word access is interpreted as the end of the long word access. Thus the interval between the two
successive word accesses of a long word is not called a processing time.

The access time, denoted by ¢, for the access of some pracessor @ is the interval between the
first rising cdge before BPRN* goes low o the firsi rising edge of BCLK* after BREQ;* gocs
high.

The recovery time, denoted by ¢, for the long word access of some processor 7 is the inter-
vl between the first rising edge of BCLA* alier BREQ,* goes high at the end of the first word
access to the first rising edge of BCLK* after BREQ ™ goes low for the sccond word of e leng
ward access.

The waiting tiine, denoted by 1,0 for any request for use of the Multibus by processor 7 s

the interval between ihe first rising cdge of BCT R * after BRIEQ, ™ goes tow to the first rising edge.
;- £OCS OV NC IS simg

of BCLK* biefore BPRN* goes low. In the absence of any other traffic on the Multibus, there is
always cxactly one rising edge of BCLK* alter BREQ:* goes low and before BPRN;* soes low,
viclding r, = 0.

The above definitions were chosen so as o mect the following two constraints: [) the access
time must include the tol time that Multibus resources are allocated to a particular processor,
and 2) the waiting time must be zero for a single procossor on a Multibus, Phe time that Mul-
tibus resources are allocated to a processor is determined by the Multibus arliter which is a small
finite state machine clocked on the rising edge of BCTA*, We chose to regard the allocation of
Multibus resources to be decided on the rising edge of BCTA™*. This view iy not unigue: we could
have just as well chosen the Multibus resoarces to be allocered on the cdpes of BPRN,*. How-
ever, our choice has thiee advantages: 1) the allocation instants are casily demaicated by BT R *,
2) the waiting time can be defined so that it is casily dennarcated by BCTA™* (so it is casy to

mcasure) and it is sero for a single processor, and 1) our hardware monitor $he DS, see the

next scction) also samples all signads on the reing edge of BCT A Note that oy definiten of
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W
r
‘!..:
access ime includes the delav of the Multibus arbiter. This must be the case if we are to meet our Eane!

st constrannt sinee any delay eftectively increases the duration of any allocation of resources,

Ihe previous defimitions are depicted in Figure A3
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‘The measurements presented in scction 4 indicate that there is little difference in access ol
o
. . . , . . . .. St
times for reads and writes: thus the MRDC* and M ITC* lines are omitted {rom Figure ALl {\.{: )
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3. Time Measurements DA
N
A"
. . . . e . . S .\ -
All the measurements reported in this section were taken with a digital logic analyzer with 10 ANk
AR
. . . . . . . oo
nsec clock resolution’ dccording to the definitions given in section 2. 'The measurements were o
nerformed on three slices of the Concert system connected by the Ringbus with & Ringbus arbiter P roge
. i ) . . o ‘-'.'b'.'-'
clock (/.C1R) period of 200 nsee. All the piocessor and memory boards wese Microbar DBCoSK NN
N
and DBRSO maodels respeciively with all options set as listed in Appendix €. All the mcasure- DAY
WA
,,.

&)
X
o

ments were repeated for several ditferent processor-memory pairs o dilferent slices. No notice-

)
]

able difTerences in the measurements for the difterent repetitions were obscrved, thus we present

&
X

%’ﬂ. 4

the following measurements as if only onc set of measurements were taken for cach case.
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Y1 Minimum Processing Time 5}"{
Executing the assembly language program
e
. e RGAY
loop: bra loop .'4"‘,'.\»
. . N . . A
(corresponding to the single instruction word 60fe) from a nen-focal memory gives the smallest _s.f-_'\.
L {
puossible processing time. ‘The processing time in this case is the time it takes o decode the -gj‘-
instruction word 60fc and initiate the fetch for the next instruction. ‘I'he minimum observed pro- ]
cessing time in this casc was 000 nsec; the processing times varied almost uniformly from 600 nscc Wah.
Al
0 900 nsce (in 100 nsec steps since the time is measured with respeet to BCLK * rising cdges). e
A
e . . . . . . . el
l'o determine the smallest possible processing time for a program cxccuting out of local Vo)
memory we ran the following assembly language program: .
. ) (RN
loop: movb ad@, aSE@ )
)
=
A
!

movb ad@, a5@@

bra loop e

The movb ad@, a3¢2 instruction reads the byte at the address stored in address register a4 N

. - . '.--{‘
and writes the byte at the address stored in address register aS. We stored the loop containing the NN

P2l s
. . . N \ . . . )
movb instructions in a processor's local HSB memory, installed non-local addresses in address RSEE.
. . . . . . . e
registers a4 and al. and mcasurcd the minimum processing time of the movh instruction. “There N
arc actually two different processing times associated with the movh ad@: 25@ instruction: the - -8
A
interval between completion of the byte rcad and initiation of the byte write within on¢ movb pARAY
4@, a5@ instruction and also the interval between the completion of the byte write of one movb e
aS@, ad@ instruction and the initiation of the byte read of the following movb ad@, aSE insuruc-
tion. The intra-instruction processing time (i.c. the former of the two processing times just men- e
i WS
tioned) was 600 nsce about half the time and 700 nsee the other half. ‘Fhe inter-instruction pro- RN
. . . . . . . N N \.':'
cessing time (i.c. the latter of the two processing times) varied from 1.20 to 1.40 psec. S
BN

We also considered the minimum processing time of a program exccuting out of non-local b
memory subject to the restriction of one non-local memory access per instruction. To determine .—5,-;;,‘
. .. . . 'f"d‘
this minimum, we ran the following assembly language program: S
‘---b

loop: movh d7, aS@ St
~ )

h )
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bra loup
The wovb d7, aS@ instruction writes the byte in data register d7 to the address contained in
address register #5. Wc stored the loop containing the movb instructions in a processor’s local
HSB memory, installed a non-local address in address register 45, and measured the processing
time of the movb instruction. This processing time consists of the time to fetch the single word
movb instruction. decode it, and initiate the byte write on the Multibus. The processing time of
the movb d7. aS@ instruction was consistently 1.50 uscc. We also tried the movb aS@, d7 instruc-

tion corresponding to a byte read. and also measured 1.50 pscc.

3.2 Recovery Time
1 he distribution of recovery time between the successive word accesses of a long word access
vas the same for reads and writes: approximately half of the time the recovery time was 600 nsec

and the other half of the time it was 700 nsce, yiclding a mean of 650 nsec.

3.3 Access Time
Since all the memory boards are dual ported we have to consider the effect of tratfic on one
port of & memory board on the access time via the other port. in all cases we found no difference

in the access time distiibutions for bytes and words and in the access time distributions tor the two

words of a long word access.
3.3.1 Multibus Access Time

3.3.1.1 Multibus Access Time with Other Memory Port Unloaded

In this casc the access time distribution was approximately the samic for reads and writes,

with a minimum access time of 1.00 psec and a maximum of 1.30 gscc. The actual obscrved distri-

butions arc given in Figure A4 below,

', v L aha
SR

|;a'!

N A A N A
P AR

“-..'.._.

R

'.":\.“'\",\::\."Q“:\
" NV ARCAS

.

s

YT Oy
AN - N AN
AN Ler Ay

Cog i o

24

My

27

- -

"

LN
TR
ST

P
-

AR

.l. ..j.‘I.l
':‘z"'/"- LA
AU

..‘ .1'

A

LR A
,lT l'/ "

[ %0 e S
P AP R AL
LA A YA

/s
Ay
!

I

AE50

o
*

"o L

AN
R
o'
A

oo

" -
:‘\f..d'
i

ly

Ca A
' \-._\f\
4"\- _‘4‘

RN
v )



PR N A

Appendix A

Figure A.4(a): Multibus read access time - other port unloaded

acecess

- tune

psec

Figure A.4(b): Multibus writc access time - other port unloaded

3.3.1.2 Multibus Access Time with Gther Memory Port 1.oaded

We considered two situations; 1) accessing the local memory of another processor via the
Multibus while that processor is loading the HSB port of the memory, and 2) accessing the global

memory of a slice via the Multibus while other processors access it via the Ringbus.
1) Accessing the local memory of another processor:

We loaded the HISB port of the local memory by having the associated processor exccute
loop: bra loop
out of the local memory. We obscerved no noticeable difference between the access time distribu-
tion for rcads and writcs via the Multibus, As indicated in Figure A.5, the access times varied

from 1.00 pscc to 1.80 puscc.
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% accosses
< 1
¥
2% 20 20
I I S RN
0 ‘_} 1 Y T 4 1 t ? ? ? time
1.00 1.i0 1.20 1.30 1.40 .50 160 170 1.80
psee

Figure A.5: Multibus access time - HSB port loaded

2) Accessing the global memory of the slice:
We loaded the Ringbus port of the slice global memery with 3 processors on another slice
and 2 processors on yet another slice all exccuting
loop: bra loop
out of the first slice’s global memory (i.c. over the Ringbus). Figure A.6 shows the resulting access

time distribution for Multibus accesses to the slice global memory. We observed no noliceable

difference in the distribution between reads and writes.

%acccs«:si
50 1 40 40
25 1
10 4 3 3 access
0 J__% } + + ? 1’ ? T —> time
1.00 1.10 1.20 1.30 1.40 1.50
psce

Figure A.6: Multibus access time of slice global memory - Ringbus port loaded
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3.3.2 Ringbus Access Time e
l'
L.
IFigure A.7 depicts a Ringbus read access (byte or word) combining the points of view of the
31
originating processor and the Ringbus, for a single processor in a slice. s, '.'
¢
ll ‘Fi :l:’l'
e Saniinniminim nihhhnhnainihnhhhhh L,
I -
BRIQ* IT —I .:::
- Pt
BPRN® [ : N
| | S
—— " o
MRDC* | | | l | a7y
':';‘
XACK® 1 0%,
I*‘-
"
- HREQIOR1Q :f.: §
i bt A,
ik _J LIy Uy UL U wriguwn TOANY,
:J‘sf
[ — —_—— LA,
llau;h arb trans ey
n.,:\d
RIQ* | [ | hOA
e d
| f—— d | A
I [ R
INMS e ] | | S
start . R
N
N
o
“~
‘1‘.'\ v
‘e
. ot
Figure A.7: Typicol Ringbus read access D‘: '
RIQ* is the Ringbus request signal for the slice; it indicates that the RIB has detected an ;:.‘ )
access that requires the Ringbus, ENM* (short for cnable Multibus) is the Ringbus grant signal ) i:‘_’:\
. . . . . W
for the slice: it indicates that the Ringbus request has been allocated the necessary Ringbus seg- ,-: o
o
ments. 1.CLK is the Ringbus arbiter clock signal. ‘I'he Multibus and the Ringbus operate asyn- PRy
chronously with respect to cach other, thus BCLK* and 1.C1LK arc not synchronized. Since R1:Q* :i.f,-.
Y is gencrated from Multibus signals, it is not synchronous with 1.CLK. On the other hand, ENM* f:‘_-:::-
is generated by the arbiter so it is synchronous with 1.C1K. e

Pl

iy
I'.
>
Y .

We define a number of quantitics with respect to the diagram in Figure A.7 as follows:

1, is the Ringbus access time (as defined carlier) e

BPRN10REQ +

Knorm) is the normal time from initiation of a Ringbus read access’ to generation of a Bty

Ringbus request. We discuss shortly what normal means in this context. 4-';..\:

Harenr 18 the interval between the geieration of a Ringbus request and the arbiter latching in

on a rising 1.CLK cdge. e

Istare 15 the overhead associated with the start of a Ringbus access. 1t is the interval from the AN

R P PR I A W S
“u N e
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N'. v'
Ay
initiation of the accessT to the latching of the Ringbus request by the arbiter. k_‘;,
2
turp 1S the arbitration delay.
Liuns 18 the data transfer time. ttis the interval from the ead of the arbitration delay to the e
A
termination of the access.” Note that in actuality, data transfers on the Ringbus occur in the -\:-';
interval between the end of the arbitration delay and the falling edge of XACK®. "Thus #1ns ol
should be interpreted s the total interval in which a data transfer could occur, not as the ..
. - . . $ “-
interval in which it docs actually occur. \:: ¢
¥ (
as . . . . &
Finally, d is the total duration for which scgments are allocated to a Ringbus request. e
w Nl
h ) "
The observed means of these quantitics with onc processor in a slice are as follows: b W
\‘. d

1,2 2.17 psec (We present a histogram of the aecess time in section 3.3.2.1.)

{BRNOREC. 230 nse §z
taseh —= 150 nsec
>
1 =380 IO
Lorare =380 nscc A,
e ™
e
Yyruns = 1.38 pscc . :.',:;
e
= 9.1 arbiter cluck periods i.e. 1.82usec. (The arbiter clock period was 200 nsce for all the e
measurcments reported in this Appeadix. as mentioned carlier)) o was cither 9 or 10 arbiter A
. s
clock periods. o -~
Since the Multibus signals are asynchronous with respect to the arbiter clock, one would I
- ..\- '#
expect fges o be half an arbiter clock period, i.c. 100 nsce. In actual fiuct it is a little more than nre
-

this (as can be seen above) duc to the delay contributed by a preliminary sampling stage incor-
porated in the arbiter to inhibit metastability in the final sampling of REQ™*. (#g¢p is measured
with respect to this final sampling.)

"The start overhead, /gy, . and the access time, /,, vary with the spacing between the tenmina-
tion and initiation of successive Ringbus accesses gencrated by the slice in which the processor is

located. (Of course, 1, also varics with the rate and type of Ringbus accesses generated by other

slices.) In scction 2.9.2 we detined this spacing (0 be the processing time of the single processor
cquivalent of this slice and we denoted it by lM Beav prigure A8 depicts the same signals as in Fig- - g

ure A.7 for a Ringbus rcad access with t’“”""" 0. (I'his was achicved with only two processors on

a slice, cach exccuting

loop: bra loop

-1' liy'inilialiﬁn and termination of the access we mean the first rising edge of BCT K* before BPRN® goes low ) .
and the first rising cdpe of BCLK® before BPRN goes high respectively, as defined in section 2 of this Appen- NN,
dix. ~ _-.':\ ¥
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out of the global memory located in some other slice.)

~,r. ‘Mllcqv

EER I e SUIUUULUI AU U YU

BPRNtoRIQ
1 ,‘_ l(norm)‘

’l CWPRNORIQ _..._—.l
" L BPRNIORIQ  —]
l].ll\l'l arb l(m)o ‘Q l-—-—ﬂ ‘arb

Figure A.8: T'ypical Ringbus rcad access with 1}’”""" =0

The reason that fy,,, and 1, vary with (M8 is that the ENM* signal remains active for a
start a y p g

period after the termination of a Ringbus access. f /,,M Aeqv i small cnough, as in Figurc A8, the
ENM* signal remains active past the initiation of the next Ringbus access and causes a delay in
the assertion of the REQ* signal (since the REQ* signal for the present accesses cannot be
asserted until the ENM* signal for the previous access has been disasserted).  We define
l(’f,’(:f‘;,’,v,"’k"v to be the time from the initiation of a Ringbus access to the assertion of REQ* if
REQ* s not  delayed by the ENM*  from the previous  cycle. Thus
{ IPRN1oRIQ :/(’,’,’,;f‘;,’}/,"”?"‘() # ldetay - The duration for which ENM* remains active past the termi-
nation of the previous access is 1, + 155" +d"™ — 157V = d"Y — ([7¢5, where the superscript prev

denotes the quantiy in the previous access. 'I'hus
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If 1414y >0 then, ignoring a small propagation delay, REQ®* is asserted at the same time that oA
ENM* from the previous access is disasserted. Thus fg,,, cquals (BPRNOREC ohis one arbiter .
period. ‘Therefore ,':'
BPRNREQ : . [
l’(nvnn)‘ ¢ * larch if ldelay =0 Aol
1 = b, 1 . |'] ]
start ll(f,{,f,f,v)"’k"() + ldelay +200nsec if lgeay >0 s
[
where (e i the latch time when fgeay =0. Finally o =tyan + larb + lyrans. Measurcments :‘:
revealed that the distribution of Urans 18 approximately the same (fairly uniform over the interval :.\_
. . . . . S
1.30 to 1.45 psec) regardless of l,ﬁ" Beav (although its mean is slightly different for reads and writes), -.;_‘:
- . . . .o &>
I'huS fgqy, is the sole contributor to the change in 4, as 1,;" Bewr varics. ‘Thus
.
BPRNWREQ . _ E‘\
{{(norm )0 04 lateh * larb + lrans 1T Ldclay =0 “:;:
lg=|,nr ‘0 - D
a l(,,,,f,,/,v,’"” ¢y larb *+ Urans + ldctay +200nsec i1 {yeyq, >0 g,,-;‘_
~l
a, \
.
or simply A
L.‘. 3
(nom) - D
(Ia if ldetay = 0 P
lo = . Ry
@810tk # Uclay + 200nsec  if lyeqy >0 R
RS
(norm) ; PR c":;'l'
where 1, is the access Ume if fg04y = 0. ‘
. R . . . R
In scction 3.9 we defined the spacing between the comnpletion of a Ringbus grant and the _i .
initiation of the next Ringbus grant from the same slice, excluding the waiting time of the Ringbus "‘.‘,:
KNS
requests, to be the Ringbus cquivalent processing time which we denoted by lpR Begy, :’-:E'
' &
If tgeiay =0, l,,R”“‘" is t}," Beqv blus 1y, and 1y and less the duration for which ENM* -
. . - . . . SeN
remains active past the termination of the previous access.  1f fy00,, >0, llf"”""" is three arbiter ».;\‘):.
LR
clock periods, i.c. :‘.:ﬂ'
ALY
\l‘\.
RBeyy 2V 1 trars + ars ~ (Gt + Uiarp +d™ + 157 if Idetay =0 '\'..".' ‘
" 7 |600nsee if liclay >0 NN
CRGCIRAY
] : N
Note  that if  fggey =0, then 1BV 4 g, +dP™ 4 v MBew 4 (JURNOREC and e
. yBPRN1oR oy NN
Lssart “= {nonn )o v + lggen, yiclding 8 :::
lateh *lars  1F laetay =0 <A
! Rll('qv> . e
P =1600nsec  if igeiqy >0. e
.. \f.l\i )
NOW #5420 and 1,5 =2 arbiter clock periods, thus 18P9">2 or 3 arbiter clock periods RAHY
latch 2V ¢ arb ¢ < p . > ip z < ( P . (\l{ ;
I'he observed means of the quantitics in Figure A.8 (read accesses with IPM Begv ~0) are )
LA
- NATN
ly =247pS¢C A
. . ik.\-‘ \
- S
Istar =690 nscc ',\::\:_
: LAY
)
) . [V
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lyrans =1.38 psce
d =9 arbiter clock periods i.c. 1.80psce (the duration was consistently 9 clock periods.)
‘The sitation just discussed for Ringbus read accesses is similar for Ringbus write accesses.

The ohserved mcans for write accesses are summarized in Table AL,

IpM Heyv lurgc { pM Beyv _ 0
la 213 psec 2.58 psec
1QPRNGREQ | 230 nsce n/a

Isiart 380 nscc 830 nscc
Trans 1.35 psec 1.35 psec

d | 9.6X200 nscc | 9.5X200 nscc

|
Table A.1
These figures reveal several things. Finst, for large (MA@, (BPRNOREQ " and Ty arc the

same for rcads and writes while 7, is slightly less for writes than for reads. Sccond, for l,;" Beqv g,
both 1., and /; arc larger for successive write accesses than for successive rcad accesses. This is
due to the fact that FN¥M* remains active for a longer inierval after the termination of o write
access than after the tennination of a read access. Thus the access titne of a read or write depends
on the type of access preceding it. We only investigaied cases with reads preceding reads and
writes preceding writes. ‘Third, d is slightly greater for writc accesses than for read accesses for
both large l,f'”"""' and I,’," Beav -,

3.3.2.1 Ringhus Access Time with other Memory Port Unloaded

e . A . . . Regy
I'he observed access time distribution for this case for rcads and writes and for large I!V,MI""

and l,f'”‘""’:O arc given in Figure A9,
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Notc that l,‘,""”"’ does not have much cffect on the distributions except for a horizontal shift 1

. . . - . . . . 3 g .‘.l.'

reflecting the larger mean. ‘T'he horizontal shift is indicative of the duration for which ENM* X
~ a

remains active past the termination of the previous access. As mentioned carlier. this duration,

and hence the mean, depends on the type of access preceding the observed access. [t seems that
most of tiie randomness in the Ringbus access time. as Ieast (or reads preceded by reads and
writes preceded by writes, is due to the random arrivals of the REQ™ signal with respect w the

arbiter clock. .

3.3.2.2 Ringhus Access Time with Othier Memory Port Loaded

We loaded the Multibus port of a slice global memory with four processors excecuting

loop: bra loop

out of the slice global memory on the Multibus. We obscrved the access times for aceesses (o that <
same global memory over the Ringbus from another slice. No sighificant difference was observed 1
in the access time distribution for reads and writes for large l,',” Beav — Qur observations for large
) /,f"”‘""' arc summarized in Figure A10. e
e
=
"_I-’
e
N
1
" "
\..'.
o
4
‘-‘\
[}
o
AN AT AT T w w e




-A183 619 HODEI."‘G THE PERFDRHMCE OF THE COICERT WLTIPROCESSOR 4“4
J{2,) MSS&CHUS TS INST OF TECH CAMBRIDGE LAB FOR
CONPUTER_S R B OSBORNE MAY 87 IIIT/LCS/TR 3?5
UNCLASSIFIED mou-e:-x-u 5




]

..vm m m u
= EEF)
Mm—um,._._.:._.m

2l =l

NDARDS - 1963-4

2 1

WMICROC(IPY RESOLUTION TEST CHAR]

(e MATIONAL BUREAU OF STA

N
N

L\

W
n':\

U %
'0'.:.
O ‘:‘\'

[
o

b
(R



286

%

Appendix A o0

JOCCSNCS y

s
5
5

5 1"
b I 2 2 access ‘9\’
N
% S35 SR LS S (N N (S %
2.00 210 220 2.30 240 250 » )
pscc % ”.\
y

Tat!
A,
. . . . . . MB{'(,V o ‘:.‘

Figure A.10: Ringbus access time distribttion - 4, large and other port loaded f.}: -
" +
- T
lFor l:’ Beav 0. the access time distributions are similar, except for a horizontal shift. Note that for i)
small cnough l,,“ Bewv the distribution, through the mean, docs vary between the type of access TR
. L RO,

ubscrved and the type of access preeeding it. -
I“ i
h\ Y
L] rA' .

e

3.4 Access Times: General Observations

. ‘I'he access time distribution is approximately the smne for Multibus read and write aceesscs.

AEE

-

e ‘Ihe mean Multibus access time varies from 1.05 uscc to about 1.2 psce depending on the e
: NN
loading ¢n the other memery port. ':
O
e  The access time distribution for Ringbus accesses depends on four factors: i
- ‘i'.
1) the type of access. L}. \
SO
2) the type of the preceding access. K_:”‘ .:
MBcyv ':"'.' :‘
3) the valuc of 1, ., and (LAY
4) the loading on the other port of the access's memory. EI- 3\
] N
‘The sccond factor is only relevant when l,’,‘ 1Bety i small. NON
s
e 'The mecan Ringbus access time varies from about 2.13 psec to about 2.58 uscc depending on gty
Y
the above four factors. -
S
e ‘The til of the access time distribution increases as the loading on the other port of the 'f:}:,.}'
EA
accessed memory increases, o
1-..'..‘
. Reads and writes have @ Ringbus grant duration (i.c. duration for which scgments arc allo- ;:{:;p‘
cated) of 9 or 10 arbiter clock periods. o .',-
. \.-
. . Ll
® l:m"q' cannot be less than 2 or 3 arbiter clock periods. NN
N
N
6%
A
RN
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1.5 Read-Modify-Write Access Time

A test and set instruction has an access time of about 2.60 uscc to 2.70 psce on the Multibus
and an access time of about 4.30 psec on the Ringbus, (These figures are with the other memory
port unloaded in cach casc). We did not determine distributions for these two cases, lFor a

Ringbus access, the scgments are allocated to the aceess for about 19 arbiter clock periods.

AR Y
<o '."\’t.!

bhA NS
w.

oo

AN ‘-

& A
-

f..sl
<

o
A

PSS A ]

V&
¥

a3

EA A
R

G
* f‘v:l «

S

DN
UJ‘

N AN\
A\ Y Y

*
D)
>

Ll

AR

p
T ]

Pael

L]

- - - - e w7y

e e N “a % N
' .I L '- .I ’ - - o

! .l.*..\":h\__:\.n"_n. At




a8 Bt 0 T ;‘0; N ’l"l
. (AW NXR
FORERTON

ORI

. . 4 0 'ﬁ‘|:4 (RN

RO

EE ]

N ¥ R [l (>

Cow, 3 I

l.:;vtl‘
288 , |

N, j‘\"
[+ ﬁ "
b 1::‘|'
SRR




289

Appendix B

In this appendix we present the proofs for the various L.emmas and Theorems which would

have hindered the flow of presentation if they had been included in the inain text.

Theorem 2.1 .

With independent identical processors with deterministic processing time 1, and deterministic
access time , served by a single bus in FCES order, the waiting time per request after at most two
cycles of cvery processor is the same for cvery request. Morcover, after at most two cycles of
cvery processor the FCEFS queuc is cither always empty or always nonempty at the iustant a

request arrives at the queue.

Prool:

et there be N processors denoted by 0,1, 2,3, - -+, N --1. Let ;(n) denote the time
at which processor i makes its » th request for the bus (i.c. the instant that processor (s
n'™ request arrives at the end of the queue). l.ct wi(n) denote the waiting time of
processor §'s n'h request. ‘o simplify the presentation we choose to interpret 7;(x)
and wi(n) as 1 mog N(n +1i7 NI) and w; ,pog nin + i/ NI} respectively whenever

i<0or i2>2N. Wc then have

tiln + )y=ti(n) +wiln)+1, +1, 2.1.1)

Without loss of gencrality start counting the requests made by cach processor at the
first instant at which all ¥ processors have made at least one request for the bus and
lct the initial condition be

k) S () S (D < - S iy (1),

with tics being broken by the FCES service discipline in favor of the smallest num-

bered processor,
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I et the interval between the requests of processor @ and processor (i /1) mod N be

denoted by Ar(n) where
Ari(n) <t 4 (n) 1 (n)

where again we interpret A7, (n) as Al mog (1 #1i7 N). From equation 2.1.1 we

have
Atin + 1)=At;(n)+ wi ((n)—wi(n). (2.1.2)

Because ol the deterministic processing and access times, requests remain in their initial

ordering for all # 2> 1; thus the FCES queuce enforces
wi o i(n) - max{0, wi(n) + 1, - Bti(n)). (2.1.3)

With cquations 2.1.2 and 2.1.3 we obtain

Iy if w, . (n)>0

A £ D=1 n) # A ) i w;, y(n)=0

But if w;,1(n)=0, then —wi(n)+ Ati(n)21,. Thus &;(n 1 1)21,. or more specifi-
cally

Aii(n)21,, i20, n22 (2.1.4)

i.c. after the first cycle of every processor, the arrival of successive requests must occur
at intervals of at lcast the access time 4,. Lguations 2.1.3 and 2.1.4 imply that
w; 1)< wi(n) for n 22, with cquality if and only if w,(n) =0 or Ar(n) =1, for n 22
(or both).

‘Therefore if w,(n)=0 for any i>0 and any n2>2, then wi(n):=0 for cvery i20 and
cvery o past that point, and it wi(#)>0 then Ar, _(n +1) =4, implying that
w,(n + 1) wi_(n F1),

Now cither w;(2)- 0 for some 20, in which casc w,(n)=0 for all ;120 and n 23, or
w;(2)>0 for all 120, in which case Az ((3) -1, and w, () =w; _1(3) for all i 20 which
in turn implics that Ar(n) -1, and win):=wy (2) (by cquations 2.1.2 and 2.1.3
respectively) for all i20 and #2>3. Therefore win) = for all i>0 and #2>13 where
C =0o0r C>0.

Thus the waiting time per request is the same for cvery request for n 2> 3. Morcover,
the waiting time per request for 123 is cither always zero or always strictly positive, &

2
implying that the FCEHS queuc is cither always emply or always nonemply respectively

at the instant a request arrives at the queue. .
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Existence and Erpodicity Assumptions of Section 2.3
I. Wc assume that a stationary probability distribution exists for ¢,.
2. Wc assume that the winting time process is ergodic,

3. Wc assume that the time averages necessary for any application of Litte's Law o the queucing

system described in section 2.1 exist.

Some Conditions Guaramtecing the Validity of these Assumptions
We first describe the basic G/G/1//N queucing system as a Markov process and then con-
sider some conditions on this Markov process 10 show the validity of the above assumptions, We
assume throughout that;
) the processing time, 7, at cach processor is a random variable with a stationary distribution
and F]1,}<00
2) the aceess time, £,. is a random variable with & stationary disteibution and #]r,]<00
J) the processing time random viriables (one for cach processor) and the access time random

variable are mutually independent.

q
9
let d, be a N -1 X1 cohumn veawor e, ¢, =] - whose clements indicate the time
{Il.l "I

that a regnest enters the gueue (i.c. the time that a processor makes a request) relative to the time
at which the request presently in scrvice began its serviee. | ¢t the clements of g, be ordered so
Wy

-
4n

h

that ¢, <75 - - - <gp - 1. Consider the vector ¥ -~ where w, is the waiting time of the »”

request o arrive at the queuce. We then have ¥, | --f(.'(,,,l,,"./,,n) where ly, is the service time

h h

(access time) of the #™ request to arrive at the queuc, Ip, 18 the processing time of the n”

request, and (- ) is a deterniinistic operation on its arguments defined as below,

The operation (- ):

1. Insert la, * 1p, in the ordered list defined by g, so that the clements remain in nondecreasing
order with respect to the element indices. ‘The list now contains N clements ¢'1.¢'y. -+« g¢'n
obeying ¢ 1<g's< -0 L'y, The inserted vequest represents the time at which the next
request from the processor whoss reauest s piesently in service again enters the queue, rela-

tive Lo the time at which its present reguest hegan serviee,
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2. wpey o max(0, w, + la, ~ 4’} the waiting time of the next request W arrive at the queuc.

3. Subtract ¢’y from all N entrics in the ordered list ¢'1.q"a - - - .¢'n. Discard the zero value i.c.
Ain o), - 4,1 -4 1IN - 1 where g, b, is the it clement of dy + 1. This subtraction
updates the request arrival times relative to the time at which the next - ic. the » S L

requicst began service.

‘The sequence {¥,}. n>1. with some initial probability distribution I’r(?ngj")l' describes a
discrete time continuous state Markov process with stationary transition probabilities (since /(- )
is detcrministic and la, and Ip, AFC stationary random variables).

Lot p*AR.A) denote the v step transition probabilities i.c. pOAR.4)- Pr(Z in sct ACRN
after v transitions). If we define p"(®Z.A4) - p(R.A) and p(A4) - PrH(TH€EA) then we have

p(r (%A ) f,,(v)(;'-‘/' WX 1) for ¢ 21 and .

RN
p{A). n=1
Pr(¥,€4) -
e fl’(" DG AW dH). n>1
RN

If Pr(3,€4) iy independent of n then the process deseribed by {7, ) is strictly stationary and
p( - ) is called a stationaiy probability distribution.

We define the sequence {¥,} to be periodic with period M iF X, =3, , 4y tor n2>m tor
some integer m >0 and some A <00,

We arc now prepared to consider some conditions guarantecing the validity of the ixistence

and Ergodicity Assumptions.

Case 0: 1, 0 for every n2m for some m>0. In ths trivial cose T Pris, <y) certainly
n—» 00 "

. - 1A . . TR .
exists and 1, - lim e - 0. Thus a stationary probability distribution oxists for ¢4, and
n—00 ) . ¢
t=m
1, is crgodic. ‘The application of Little’s | aw in this case is just an academic excrcise since
the majority of uscful information has alrcady been conveyed by the fact that v, 0 for
L]

n>2m. We note that if I, -0 for n2m, then the N processor system is really M oindepen-

dent subsystems.

t Here X <JT means less than or cqual clement-wisc.
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Since cach of these simple subsystens is closed. the time averages must be finite. lFurther-
more, due to the extremely simple structure and the stationarity of the probability distribu-
tions, the time averages cannot fail to exist due to periodicities. Therefore, the time averages
for cach subsystem must exist.  And since all the subsystems arce independent, we conclude

that the time averages for the entire system must cxist.

We assume in the following that we do not have ¢, =0 for cvery n2>m for some m>0,
L}

Case 1: 'The Markov process {¥, } satisfics Hypothesis 1D of Doob [p.192 of Ref. D1] which
roughly stated is the following:

Hypothesis 1)
‘There is a probability assignment of sets ACRN, an integer v2 1, and a positive €, such that
PR AV - ¢ if Pr(A)<e.

(A more precise statement in terms of Borel sets and measures is given by Doob). ‘This
hypothesis basically says that it 2r(A) is small then p*X@.4) is uniformly bounded away
from 1. In particular this mcans that {¥,} cannot be periodic since then p@ Y@, 7)) =1 for

all v21 and m>n. If a density function p(® ) exists (i.e. po(X 3220, fm-,(i’."x,’)(l'vi:l.
RN

and p(¥,4)- fpo(?.?i)d'ii ) and is bounded, then Hypothesis 1 is satistied [Ref. D1, p.193].
A

‘This condition is somewhat stronger than Hypothesis 1D and excludes impulses in pg(X*.3)
(i.c. discontinuitics in p(¥.4)). Hypothesis 1D does not exclude discontinuities in p(¥.A4) as
long as p(X.4)<1 for all ¥, and all A for which Pr(4) is small.

Now since we occasionally have 1, for n2>m for some m (by assumption), all N subsystems
L]

must communicate, hence {¥,} consists of a single communicating class (or crgodic sct, as
Doob calls it). Doob’s ‘Theorem 5.7 [Refll 1), p.214] then asserts that under Hypothesis 1)
there exists a unique stationary  probability distribution for ¥, independent of ¥y, ‘This

implics that a stationary probability distribution cxists for 7, i.c. lim i’r(/”n <y) cxists,
n-+00

Furthermore, Doob's Theorem 2,1 [Ref. D1, p.465) (sce also Theorem 6.1 and its proof on

p.219) asserts that £, — lim ! ilw'.

n—00n

All the time averages necessary for any application of Little’s Law to the queucing system
described by the Markov process {7, 1 can be derived from this Markoy process. Any nartic-
ulir time average of interest can be expressed as the time average of scing random variable

which is a deterministic function of ¥, 1, . and 1, . For example, it ¢, 1cpresents the
n n
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interval between the ariival of the n™ and the n /1" request 10 be served in the
G/G/1//N system, then the time average reciprocal of the arrival r¢ (if it cxists) is
Q . , -

z‘u,- where @, = minlqy 4, t1p ). As another example, if i, 1epresents the number

i=l
of requests in the G/G/1//N gquecuc waiting for service when the # th begins service, then

1
lim —
n—00 N

the time average quecuc length (if it cxists) is Im;o o 2atly, where n, is computed in a
n-—> n;
i=1

straightforward manner from ¢, " Since the Markov process {7, } has a unique stationary
probability distribution and /4, and 1, have stationary probability distributions, any random
variable which is a deterministic function of these quantitics will also have a stationary pro-
bability distribution. Doob’s ‘Theorem 2.1 [Ref DI, p.465] then implies that the time average

of such a random variable exists (since it must equal its mean, which exists stnce a stationary

probability distribution cxists).
Case 2: 'Ihe Markov process {¥, } is periodic.

Lemma B.1

The Markov process {3, } is periodic if and only if 1, and 1, arc doterministic random vari-
" ll” [”‘

ables - i.c. constants for all # 2>0.

Proof:

The "if* part: If ly, and 1, arc deterministic random variables, then by ‘Theorem
2.1 1, is a constant tor 123N where N is the number of processors. Now Iy, «
o, s and 1, constants for n2>3N implics that {¥, } is periodic with period at most
N.

The "only if" part: Suppose that {¥,} was periodic and lu, and 7, were not both
deterministic random variables. Consider some state X, of the periodic portion of
the sequence {¥, }. Then the next state depends en £, and 7, . But because {v,}
is periodic, this next state, X, , 1. is alrcady known with probability 1. Since la,
and Ip, arc not both deterministic random variables (and sinee both are stationary
random variables). there is some positive probability of the sum «, #1, being

such that some clement in the ordered list obtained via the f( - ) operation is

*® . . . .
Note that these time averages e ¢Gifferend frem but equivalent 1o those in the statement of Tittle's law in
section 2.3 il they evist.
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different from that in the known next state. This contradicts the hypothesis that Al

{¥,} is periodic.

a,}
Corollary B.1 ok,
If the Markov process {3, } is periodic, then 00N
1. Iw, is a constant for n>m for m>0 large cnough and thus Iingo I’r(lwn <y) cxists
n—

i.c. a stationary probability distribution exists for I, -

n
20, = lim LS ta,

n=0n ;_p

3. the time averages neeessary for any application of Little’s Law to the queucing sys-

tem described by {¥, } cxist.

Proof:

Points 1 and 2 follow immediately from [.emma B.1 and ‘Theorem 2.1. Since the

Markov process {¥,} is periodic, any time average derived from {¥,} is cqual to AT

I

the same average over one period of {3, }. Since by hypothesis the peried of e

.
B

{¥,} is finite, all possible averages derived from §37,1 must exist and hence all

B gt SR A
Dol

b
A

possible time averages derived from {¥,} nwmst also exist. Point 3 now follows

a

YAy
RS
l( \

S5y

since the set of time averages necessary for any application of Little's Law to the

‘. 3
\"’\

quecucing system described by {¥,} is a subset of all possible tiine averages

derived from {X, }.
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The above three cascs arc not necessarily exhaustive,
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heorem 2.2

Al 3 0 00" 44

Consider the queucing maodel described in section 2.1 with statiomary processing and ccess

time distributions with means, 7, <00 and 1, <00 respectively and subject to the assumiptions in

scction 2.3, Then w(N ¢ 1) w(NI<s, where w(N) denotes the mean waiting time in a N pro-

«.J.

cessor moxdel.

I’roof:

The N processor model is a G/G/1//N queucing system as described in section 2.1,
et the processing and aceess time distributions of this G/G/1//N system be denoted
by I",’(x) and I",u(x) respectively. ‘The N+ 1 processor model is a G/G/1//N-+1
qucucing system with the same processing and access time distributions - I~',p(.x) and
I-‘,“(.\') respectively - as for the G/G/1//N system. 1o the remainder of the proof the

G/G/71/7/N system and the G/G/1//N+ 1 system are referred to as the G/G/1//N/P
system and the G/G/71//7N + 179 systen respectively to emphasize the special relation-

ship between the two sysiems. The additional P denotes "pair®”,

l.et the state of the G/G/1//N system at time ¢ be deseribed by:

.‘((I,N):-(n.x,l,,‘.l,,z ..... {

where N odenotes tie aumber of processors, o indicates the number of requests
quecued for service and presently in scrvice, x is the residual access time, and Ip,s
1<i <V, is the residual processing time at processor i,

It is not necessary to include Ip, in the state description when precessor 7 is not pro-
cessing - i.c. when processor s waiting for a request to comiplete: indeed, I, has no
mcaning in this case. llowever, we choose to include I, in the statc tor this type of
situation for notational convenience (i.c. so we can always write X(/..V) in the same
way independent of which processors are processing). To ensure dhat In, is always well
defined. we et 1’:0 when processor ¢ ds not processing. The analogous sittation
occurs with x when there are no outstanding requests. [n the following we refer to the
N-wple t, . 1y, -+ 1y, by the vector 0

Similaly, et the state of the G/G/1//N+1/P system at time 1" be deseribed by

el

XU.N +])_'("‘X"I’r Ty, ) The interpretation of cach quantity in this state

description is the sumce s for the G/G/Z1/N/P system.
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N
o
‘The proof is bascd on an argument that the behaviour of a G/G/1//N/P system with ‘_:::'
n requests queued for and in service and the behaviour of a G/G/1//N+1/P system "'f*"j
n+ 1 requests queucd for and in service are probabilistically ideatical. “Ihe details of :&.::}
the argument arc as follows. E:S’:
Consider a state X(I.N):(n‘x.l;;). For some ¢ and a#2>1, there cxists a state Q:Efj
X(t' N +1)=(n + l.x'.l;;') where x'=x and l;;'-t(l;.lp,v,,)- lpy,, < 0. since the R
G/G/1//N+1 pracessor system is identical to the G/G/1//N system aside from an ::E:::
extra processor. In fact, for cach n2>1 and for cach statc X(/ N) - (n,x.l;,’), there ,':5_
exists a corresponding state X(¢'\N # 1) =(n i-l,x"l;,") for some ¢ with x'- v and :‘:;‘;
-, -
Ip = lpdpy N lpy,, =0 e
s IR
The state XUN F 1) (n 4 L 7,00 differs from the state X(.N) (n.x.0;) (aside A
from the possible difference in times ¢ and ¢') only in that there is one more request in _E;
the queue. But for a > 1, this additional request in the queue cannot be receiving ser- A
vice (without loss of generality we can consider the additional request to he the last f;_.
request in the quecuc). {-urthermore, the processing times at cach processor and the ::::3
access timie of cach request are independent of cach other and cverything clse in the :::E
system including the additional request in the gucue. “Therefore, for 21, the system ::.‘:-?

operation cannot depend on the fuct that there is an additional request in the quceue.
Thus, for #2>1, the probabilistic behaviour in states  X(7.N)--(n ‘.x,l;,’) and ,f.j-.
X(¢'N 1) =(n l,x.(/?,())) must be identical. Since given any state X(I.N)::(n.x.l;,’)
with n>1, there exists some state X(¢',N + 1) =(n + I..x.(t;.O)) and since these two “

states must have the same probabilistic behaviour, the G/G/1//N/P and the

)

]
P

G/G/1//NH4-1/P systems have the same probabilistic behaviour. as long as n2> 1. In : \::\
particular, if onc request in the queuc of the G/G/1//N + 1/P system was hidden from E‘.i
view, an observer would be unable to distinguish the G/7G/1//N/P queucing system b::_
from the G/G/1//N+1/P system so long as n 2> 1. = :
We now introduce some notation. [.ct w,—N denote the fraction of time that the
G/G/1/7/N/P system has 7 requests in the queue and in service, 1.t n,f' denote the 1;:';
tme average of the number of requests qucued for but not in service in the LN

G/G/71/7/N/P system. TFinally, let pN denote the fraction of time that the server s
busy. We have

N N
- N . N
"’(i' ‘ 2(’ ~Dm; pN = 2"1~
i=2

i1

teta !, n“,‘v *and pY ! be the analogous quantitics for the G/G/Z17/N+ 1/ sys-

" J',.(\::,.;__I_:.r_ .-\w;.-;f B

A -’-.,-._-_..‘.._.

. B T R A TR OO
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Lemma B.2

2N =Calforix)

Proof:
As argucd carlicr, the G/G/1//N/P system with i requests in the queuc is probabilisti-
cally identical to the G/G/1/N+ 1/P system with i +1 requests in the qucuc and in

service if i > 1. It follows that w,"f,]”: ('w,- for some canstant C.

Proceeding with the proof of ‘Theorem 2.2, there arc two cases to consider.

Casc 1: w(N)=0

Lemma B3

If W(N)=0 then &V *' =0 for i>2.

Proof:
If W(N)=0, then a V=0 for i>1. It follows from Lemma B2 that ¥ *1 20 for i>2.

‘Thus in casc | ’_";v g =pN 1 N 1<pN 1 Lrom Litie's Law we have
N+ 7
_ iy a - . ~ _ _
w(N +1)= —IVTI_‘S-’a' I'herefore w(N + 1) w(N)<1,.
p !

Casc 2: w(N)>0

n, |
If W(N)>0, then 2 ¥>0 for some i>1. By Litle’s Law we have #(N)=—{" and
P

~N+1 7
n {
w(N + l)——-—q—m?—.
P

N y
N . p s q
név e Si-Dal+ = ﬁ(l ) LTIA T oy
1=2 i=2 i=1
Net_ N+l S na
and pN =gl *14 2, #; ', Combining these two relations with Lemma 8.2
i=2
yiclds:
AR AFTUALEY TR
‘Therefore
Nl N N, N+
W(N + 1) w(N)=1, ng S { ny (€ oV oV h At
W -~ W o= al = n T — - T Ce e e
N N a Nl N Nl
* p p ' P +

S
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Applying Lomma B2 again yiclds p¥ gV e DaN=al 1 rcpN. Thus

finally,

_ a7 e
(N +1)--w(N)=t,{1 — N N+1
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300 ‘  Appendix B

Theorem 2.4

let I"',,b(s) denote the Laplace transform of the probability density function fgp(x)
with mean ¥ where fu5(x)=0 for x § [a.bk 0<a and b<2a. let I'°(s)y mAun
denote the Laplace transfurm of the cxponcential density function with the same mcan

x. Then F () mamn 2 F” ap(s) for s real and s>0.

Proof
b

Wec arc to show that I"'(s)M,M/V/N :—-:l—l—zl"‘ab(s)zfe"”f,,b(x)dx for s real
X + a
b

and 520 where x = f Xfap(x)dx. 'This is cquivalent to showing that e<1 where
a

b
c:(l+si)fe""fab(x)dx. We note that € and all its derivatives with respect to s
a

exist and are continuous it s. In addition we note that e=1 at s =0. It thus suffices to

show that % <0 for s 20.

b b
%‘; =% f e fop(x)dx —(1+5%) f xe ™% fop(x)dx

a a
e, _
s =0
22 b b
2225 f xe ™ fup(xpdx +(1+57) [ x%e T fop(x )dx
os a 2
az [ b
Now -a—;-S(—-Zf +(1458)b) [ xe = fop(x)dx. Since [xe ™ fo5(x)dx>0 and
s a a
i _ 2% --b
—2x -+(1 +sx)b <0 for s rcal and s<7—. we must have
X
2 7 -
2% <ofor0gsg 2,
os bx

2% —-b

implying that —3% <0 for 0<s <
2 b

Furthermore, a—: <(x —(1#5%)a) [ e ™™ £ (x Mdx.
a

b _
Since J e £,5(x)dx >0 for 5 real and X (! +s¥)a <0 for s>Z=2
a

ax >
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wc must have 2 <0 for s>X9,
os ax

But 0<b <2a implics b --ab <2aX —ab which implics ——— < ~———,
ax bx
. de
I'herefore 25 <0 for s20.
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Theorem 3.1
Preamble:

Consider the following two state descriptions of a Ringbus with § slices, request probabilitics
pii=—(872-1), -+, =101, ---,$/2, and subject to thc assumptions in chapter 3:

Statc description A: (ry.dyirady. < - - irs.dy)
State description B: (ry.wy,dyirywady; - - irs.ws.ds)

r; and d; denote the request at slice i and the duration of the grant at slice i, as discussed in scc-
tion 3.2.1. w; denotes the interval for which the request at slice i has waited so far without being
granted. We adopt the convention that w; =0 whenever d;#0. ‘The arbitration problem relative to
. . " . . n, .
state description A is to find a policy D4 which maximizcs the throughput g 4 given by
L)) )]
g = 24t v
(rd)
where

(r.d) denotes a particular state (using vector notation),
d(r.d) is the decision in state (r.d),
g is the reward in state (7.4) under decision d(z.d),

pf',‘_f]‘,{‘,"d') is the one step transition probability from state (r.d) to state (¢'.d") under deci-

sion d(r.d). and

D
() is the stcady-state probability of being in state {r.d) undcr policy i) 4.

‘The arbitration problem relative to state description B is to find a policy 1) 4 which maximizes the

D, .
throughput g ” given by
) D
g "= 2 qi'vu neha
(r.wd)

where

(r.w.d) denotes a particular state (using vector notation),

d(r.w.d) is the decision in state (z.w.d),

g@rmd) is the reward in state (r.w.d) under decision d(z,w.d),

petmd): . gy is the onc step transition probability from state (r.w.d) to state (z".w'.d")

under decision d(r.w.d), and

1] . .
(r . 4) s the stcady-state probability of being in state (r,w.d) under policy Dg.
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Note that if (r',w'".d’) is the immediate successor of some stite (r.w.d) then w', -0 if request
r; was granted and w'; == w, ¢ 1 otherwisc. Thus pf',‘_f,'ff/“{}'_w'_d') =0 if for any /i cither a) request r;
is granted and w',#0. or b) request 7; is not granted and w’;#£w; + 1. This can be expressed more
conciscly as p{',‘_’w'f' By =00 W' d) § W((r.wd)) where (¢ ow' d YCW (. .)) if for cach
i=—=(S/72-1), -+~ -1,0, 1, -+, 872 cither w;/=0 if rcquest r; is granted or w;" —w; £ 1 if
request r; is not granted.
Statement:

et D be any optimum policy for the arbitration problem relative to state description A,
Then, if there is no upper bound constraint on the waiting times w;, an optimum stationary policy

D’ for the arbitration problem relative t state description B is the following policy Dg:

Choose u"([.gtj.:_l) in cach state (r.w.d) such that d'([._u_'.g_{)—rd"”’(_r,gl) for all w.

Conscquently

"o ) Py for all w and all w’ such that(r' w'.d V€ W((r . w.df)
W ¢ ey =

Pirwdirw'd) =~ | olherwise

and

d(rowd

opt
d(r.wd) V- (I(dr.dY'd) for all w.

);}"‘w

. I by . - . A . . . -
Furthcrmore, g 7 =g 7”. Fhus the waiting time intormation w is irrclevant in determining the

optitmum throughput,

Proof:

I . . D
For the arbitration problem rclative to state description A, let v(,f,ﬂ, denote the value of

L . n .
being in state (r.d) under policy D" and let v, 7 denote the value of being in state 1=(0.0).
Then from equation 3.6 we have
I):’” ":"’" "T anl d 1 N l)f’ l)“’/"
g vy vt gD e 2l et )
(r'.d"
For the arbitration problem relative to state description B, let ¥y, g(n) denote the optimal
expected total reward accumulated over # rounds if the process started in state (2w, ) with termi-

aal reward ¥, 4€0). Then from equation 3.16 we have

" Jir w :
Virwafn +1)=max( gl o 2 P Ve )
d(r.w.d) (r'w'Jd)

ﬁ’“
g

“g=u ¥
A |

&
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1 e Je )
R

7

5
L

.

e ece
55

.5{‘1,

[

S Ll T
5 4% % Y4

P
2

"(.";’-.-.

AL
oy

‘l
l",

e
Uy
P

' f"'.'.'.
b

“©9
"

PAAIPY
DI Y
AN 2

.

P4
Sy
4!/

CANNESS
. ¢
h )
.'(

y

i-'

.l

RN
1 ]

Al

x

.'.I

“

B

o
[N



304 Appendix B

mad I+ D I sV

r'w'd’)
\J
max( aflrl s 2 pl ey w )Y i arfn
dir.wd)*d (r.wd) ' w'd)

Substituting in for p{',._(,’;}',(f)_,' 4" and q{,.'g;‘}')'d). we have

opt
Vio.wahn +D)=max] gf'if + DI T (P AP ()N

(r'w . dYEW(rwad)

max( R ‘I(lr(;;‘:l‘)” + 2 I’i’r(’ww )(".w'.tl') View afml
‘l(.’.."_v“_l)td (I‘Lv.g) (".W'.d')

)] )]
Let the terminal rewards be Vo, 440) = v(,z; - vy T tor every (2.w.d). Then

)] D
Ve maiD=maxt gl + T, sEUliAn it -7 )
r'd’)
D )]
max( @+ X I’{'r‘.'n"}l'ﬂ'.w'.d')(v(,'?;') Ty
dir.wd)2d (r.wd) (r'w'd)

Now cvery decision d(r.w.d) in state (r.w.d) is the same as some decision d(r.d) in state (r.d).
This p{',‘_’,;:,‘,’(f.- w.d') :p{',(j}‘,’. 4y wnd q(l,‘j;':/’)” -—-q{',."f/‘)“ for some /(r.d) for cvery d(r.w.d) for

every state (r.w.d). Since D is an optimal policy.

, opt(y D )] e D b
g%+ D Pl ety v 7") 2yl 2 pEal v(,{;) Vi T)
(r'd) r'd)
for cvery d(r.d) and thus
opt opt ) Dy )] D
aldy P+ 2l E e - O 2 ) + > P Wy ey v T
tr'd) r'w d¥EW({rwd)
n )] )]
for cvery d(r.w.d) and cvery state (r.w.d). Therefore Vi, o\ g 1) =8 44 v(,z; - vy T for cvery

. . . . . [} D,
state (r.w.d). Thus the policy Dy is an optimal stationary policy. It foilows that g r*«g '

. . . D b, .
Under poticy Dg. g% = g@% D for all w and D, 4, =m(,4) Thus

w
v, D, rwd n, ny ny
g "= 2wyl =2 ZW(ri.,:)lqu'd) S N Y
(rwd) (rd)t w (rd)

y_r

n
‘Therefore g ° =g
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